尽管多年来FNIRS技术得到了改进,但FNIRS数据集的处理仍然是一项艰巨的任务。尤其是,由于Optodes和Scalp之间的耦合变化而导致的运动伪影识别并纠正并纠正了很难且耗时。此类伪影表示为时间序列信号中的峰值或偏移。由于峰或移位的幅度通常比血液动力学反应功能(HRF)高得多,因此FNIRS信号被显着污染,并且不会反映皮质激活。当头部和四肢的运动在实验方案中不可避免甚至需要时,这种现象就会更明显,例如语音,17个步行,18和手术任务。11,12最近,由于可穿戴或无线FNIRS设备(19,20)的升高,该问题加剧了这些设备的移动范围,用于跑步或团队工作,这些设备更容易受到运动文物的影响。因此,消除运动伪影的有效方法对于在这些情况下利用FNIR是必不可少的。多年来开发的一些策略包括在数据处理过程中保留任何具有运动伪像的试验。仅当收集大型数据集并且不是当前的主要实践时才使用。另一种策略是通过视觉检查识别具有运动伪影的试验/通道,或在普遍的FNIRS数据处理工具箱Homer2中使用诸如HMRMotionArtifact功能之类的功能,然后从进一步分析中丢弃它们。为例,参考。35最近的研究36不过,最合适的方法是使用高级时间序列数据处理方法处理这些试验/通道。这些包括样条插值,21小波滤波,22个主成分分析(PCA),23 Kalman滤波,24和基于相关的信号改进(CBSI)。25这些方法的性能在很大程度上取决于一组假设,以描述运动伪影和参数相关调整的主观选择(表1)。29证明,选择PCA参数,即PCA删除27为0.80和0.97的数据中的方差百分比产生了显着不同的结果。因此,高度可取的方法,不需要对参数的主观微调或不依赖严格的假设的方法。在这里,我们提出了一种自动学习噪声特征的深度学习方法。在过去十年中,深度神经网络已成为一种强大的工具,可以快速有效地抑制图像数据集中的噪声。深度学习模型已被证明可以增强竞争性降解结果,同时与召开方法相比,保留了更多纹理细节。30 - 33深度学习网络在应用于医学成像问题时也表现出卓越的性能。例如,denoising自动编码器(DAE)模型可以Denoise乳房X线照片[结构相似性指数量度(SSIM)从0.45到0.73]和Dental X射线数据(SSIM从0.62到0.86)。34 A DAE模型的峰值信噪比(PSNR)和SSIM高10%,而SSIM比胸部辐射图中的常规算法高。
主要关键词