2.1 在制定本规范时,参考了以下规范和手册。 2.2 I. S. 10431 - 1994(1999 年重申)- 气流测量。 2.3 I.S. 5727 - 1981(2001 年重申)- 与压缩机相关的术语表。 2.4 I.S. 5456-1985(2001 年重申)- 正排量式空气压缩机和排气机试验实践规范。 2.5 ISO-8573 – 2001 (E) - 通用压缩空气。 2.6 EDPS-164 – 通用汽车电动机部门的往复式空气压缩机和空气压缩机 - 排气机工程设计和性能规范(首次发布日期 12/23/70)。 2.7 RDSO 规范编号。 MP.0.0700.14,(2007 年 6 月修订版)- 柴油电力机车水冷式空气压缩机规格。 2.8 Gardner & Denver 空气压缩机操作和服务手册 No 13-3-61 8,第 2 版 2016 年 12 月和水冷式空气压缩机零件清单,WLNA9CQ(7-7/8 和 5-3/4 x 5),213-3-511 版本 03 2016 年 12 月。 2.9 I.E.C. - 61373 –1991-01 – 铁路应用 – 冲击和振动测试 3.0 术语
足智多谋、反应敏捷的工程师,拥有 12 年以上军用和商用飞行器应用(载人和无人)推进和动力系统方面的丰富工程经验。经验包括:研究、解决方案空间优化、飞行器概念、初步和详细设计、低 TRL/MRL 发动机开发、发动机到机身集成、未安装和已安装发动机(循环)性能分析、发动机开发和性能测试、飞行测试支持和数据分析、需求和工程文档、产品采购和供应商管理、适航性、认证/资质流程、维护、维修和大修 (MRO) 以及生命周期支持(维护)。之前还拥有 10 年担任军用和商用固定翼和旋翼飞机及飞行操作技术员的经验。20 多年的航空/航天背景使我们具备了极佳的实践和分析技能,对燃气涡轮发动机、重油/柴油和汽油往复式发动机、动力系统、驱动器、配件以及未来、现代和传统飞行器和产品的相关子系统有着全面的了解。
课程编号 课程名称 AMNT 240 通用航空学与应用 是 是 AMNT 260 飞机电气系统理论 是 AMNT 265 AMNT 270 机身结构与应用 是 是 AMNT 271 机身系统与应用 是 是 AMNT 280 往复式发动机理论与应用 是 AMNT 281 涡轮发动机理论与应用 是 AMNT 416 航空维护管理:全球视角 是 是 ASCI 121 私人飞行员操作 是 ASCI 121L 飞行员知识测试准备 是 ASCI 202 航空科学概论 是 是 ASCI 254 航空立法 是 是 ASCI 260 无人驾驶飞行器与系统 ASCI 301 空中交通管制简介 ASCI 303 塔台与雷达空中交通管制与管理 是 ASCI 309 空气动力学 是 是 ASCI 316 运营业务无人驾驶航空系统方面 ASCI 317 旋翼机 是 ASCI 318 无人驾驶航空系统机器人技术 ASCI 322 飞机检查和定期维护计划 是 ASCI 327 全球环境下的航空劳动力管理 ASCI 357 飞行生理学 是 ASCI 378 直升机飞行环境 是 ASCI 388 直升机飞行计划 是 ASCI 401 机场发展与运营
同时,通用航空领域开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机,到农用飞机,再到用于客运的飞机。这些应用可能因飞机的尺寸/设计(以及安全要求)而有很大不同,但也因特定飞机执行的飞行类型而不同。尽管最初是为涡轮发动机设计的,但最近 FADEC 也越来越受欢迎,用于带有活塞发动机的小型飞机。在这一领域,Continental 和 Lycoming 等活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知,而不是飞机控制)、更好的问题诊断以及更高的性能和效率。用于航空用途的柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
同时,通用航空领域用于开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机到农用飞机,再到用于运输乘客的飞机。这些应用可能因飞机的大小/设计(和安全要求)而有很大差异,也与特定飞机执行的飞行类型不同。尽管 FADEC 最初是为涡轮发动机设计的,但最近在配备活塞发动机的小型飞机中也越来越受欢迎。在这个领域,像 Continental 和 Lycoming 这样的活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知而不是飞机控制)、更好的问题诊断以及更高的性能和效率。航空用柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
同时,通用航空领域开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机,到农用飞机,再到用于客运的飞机。这些应用可能因飞机的尺寸/设计(以及安全要求)而有很大不同,但也因特定飞机执行的飞行类型而不同。尽管最初是为涡轮发动机设计的,但最近 FADEC 也越来越受欢迎,用于带有活塞发动机的小型飞机。在这一领域,Continental 和 Lycoming 等活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知,而不是飞机控制)、更好的问题诊断以及更高的性能和效率。用于航空用途的柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
• SKF 密封件模拟工具,用于探索各种密封材料和设计的非线性行为。这有助于预测各种操作条件下的密封性能。• 可在您所在地或我们全球的测试设施之一现场进行测试。可以使用能够模拟包括极端压力和温度在内的操作条件的旋转和往复式试验台在静态或动态负载条件下测试密封件。SKF 测试能力还包括耐久性、性能、污染物排除、盐雾腐蚀、冷断裂、泵送速率、摩擦力矩、干磨损和化学兼容性测试。例如,SKF 在碳密封件高速试验台上进行了大量投资,以便对新设计进行演示测试并对设计变更进行验证测试。在模拟飞行条件下进行测试,以匹配发动机应用的飞行轮廓。SKF 每年进行数千次密封测试,其结果为故障分析和性能优化提供了宝贵的专业知识。• 高制造灵活性。SKF 制造能力包括模压(压缩、注射或转移)和机加工密封件。SKF 按需制造密封件并在全球范围内交付,数量从几个零件(例如原型)到批量生产不等。
第四学年 内燃机 内燃机是通过运动将热燃料能量转化为能量的机器。它以扭矩的形式从曲轴获取能量。内燃机用于汽车、铁路、航空和水运。 1. 根据其活动原理,发动机分为三类: a) 活塞发动机 - 具有往复式活塞运动。 - 活塞做圆形运动(汪克尔发动机) b) 涡轮发动机 = 叶片机 c) 火箭发动机 2. 有三种方式将热能传递到内燃机中: a) 在发动机工作舱中燃烧燃料混合物和空气 b) 在涡轮室内燃烧 c) 将热量从燃烧室传递到加热器(斯特林发动机) 3. 根据燃料状态,发动机进一步分为: a) 气体 - 燃料为气体(甲烷、丙烷-丁烷、天然气) b) 液体 - 汽油、柴油 c) 各种燃料(汽油-气体) 4. 根据燃料点火方式,发动机分为: a) 火花点火 - 当压缩冲程位于上止点前方时,混合气由电火花点燃 b) 压燃 - 混合气由当混合气在上止点前方被压缩时产生的热量燃烧 5. 根据工作回路中的冲程数,发动机分为: a) 二冲程- 工作循环在曲轴旋转一圈时完成 b) 四冲程 - 工作循环在曲轴旋转两圈时完成
泵送热能存储 (PTES) 因其相对于其他电网规模电力存储技术具有多维优势而成为越来越有吸引力的研究领域。本文建立了一个模型,并用数字方式研究了基于氩气的布雷顿型 PTES 系统的性能。该模型用于优化系统的总工作输出和往返效率。热存储罐的纵横比和填料床分段操作已经改变,以评估它们对往返效率的影响。发现更长更薄的罐可以提高效率,热罐长度对系统性能的影响大于冷罐。发现分段操作中的“温度比”越大,往返效率越高,热存储出口工作流体温度越高,持续时间越短,性能越好。描述功率输出的关键特征被确定为最大功率区域的持续时间和“功率前沿”的陡度。为了最大限度地延长高功率区域的持续时间并减小功率锋面的宽度,使用了额外的潜热存储,然后使用等熵往复式压缩机/膨胀机结构评估其对往返效率的影响,预测效率高达 80%,接近理论预测的极限。
简介 1884 年,查尔斯·帕森斯爵士开发了世界上第一台真正强大的蒸汽涡轮机 - 一种新型发动机,在最大功率输出、效率、可靠性和在任何地方提供任意功率的自由度方面,它有可能取代无处不在的往复式蒸汽机。与此同时,他还开发了一种可以承受涡轮机高速运转的发电机。这使他能够设计和制造世界上第一台蒸汽涡轮发电机,这种机器可以实现大规模发电,从而使电力变得既负担得起又人人可用。在他发明第一台蒸汽涡轮机十年后,他开发了世界上第一艘成功的涡轮驱动船 Turbinia,随后蒸汽涡轮机成为需要高功率和/或高速度的船舶的主要发动机类型。关于查尔斯爵士的公司和所制造机器的故事只在 1931 年(查尔斯爵士去世的那一年)才被讲述。主要参考文献是 Richardson 1911 [1]、Appleyard 1933 [2]、RH Parsons 1936 [3] 和 Scaife 2000 [4]。这个故事从未在任何地方完整地讲述过。目前正在进行尽可能完整地记录历史的工作。本文摘录自该作品,重点介绍了 Parsons 陆地蒸汽轮机从 1884 年到 1997 年的发展,当时母公司 CA Parsons & Co Ltd 成为西门子的一部分。出于必要,为了获得合理的纸张大小,这里将仅介绍技术最先进的机器,尽管这意味着以下页面仍包含大量信息。