Anthony Ayari、Pascal Vincent、Sorin Perisanu、Philippe Poncharal、Stephen Purcell。所有场发射实验都是嘈杂的,……有任何有意义的实验吗?。真空科学与技术杂志 B,纳米技术和微电子学,2023 年,41 (2),第 024001 页。�10.1116/6.0002338�。�hal-03960488�
除了(Little)OpenAI可能向我们隐瞒的内容外,我们都知道(大致)(llms)的大型语言模型(例如ChatGpt)工作(其庞大的文本数据库,统计数据,矢量表示和大量参数,下言培训等)。但是,我们当中没有人能说(衷心地),我们对Chatgpt所证明的能力对这些资源的作用并不感到惊讶。这甚至驱使我们中的一些人得出结论,Chatgpt实际上理解了。它不正确。,但我们了解它如何做能做的事情也不正确。我会建议一些有关良性“偏见”的预感 - 在LLM量表上出现的会议约束可能会帮助ChatGpt的表现比我们预期的要好。这些偏见是语言本身,LLM量表的本质上固有的,它们与Chatgpt缺乏的是紧密相关的,这是直接的感觉运动接地,可以将其单词与引用者及其命题联系起来。这些收敛性偏见与(1)间接言语基础在直接感觉运动基础上的寄生虫有关,(2)语言定义的循环,(3)语言生产和理解的“镜像”,(4)在LLM量表上以LLM量表的命题中的标志性,((5)人类的“人类知识)”,也许是“类别”的“类别”。乔姆斯基的猜想是关于思想定律。博览会将以与Chatgpt-4的对话形式。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
b“季度回顾 \xe2\x80\xa2 截至 2024 年 12 月 31 日的季度,摩根大通美国股票策略表现不及基准标准普尔 500 指数。 \xe2\x80\xa2 在医疗保健领域,我们对 Regeneron Pharmaceuticals 的增持导致业绩下滑。Regeneron 的股票表现下滑主要是由于对其眼药 Eylea 的竞争定位以及安进可能推出的生物仿制药的担忧。尽管报告了强劲的季度收入和收益增长,但 Eylea HD 的转换速度低于预期以及生物仿制药竞争的威胁带来了不确定性。该公司的财务业绩显示收入同比增长和收益增加,但这些积极的结果被市场对 Eylea 未来的担忧所掩盖。 \xe2\x80\xa2 在非必需消费品领域,我们对特斯拉汽车的减持导致业绩下滑。公司报告盈利稳健,由于成本降低和生产效率提高,毛利率和盈利能力有所改善。值得注意的是,特斯拉在其 Cybertruck 部门实现了盈利,并宣布了推出新款平价车型的计划。该公司推动对无人监管的全自动驾驶汽车进行国家监管,以及 2024 年美国总统大选对监管前景的影响进一步影响了股价表现。\xe2\x80\xa2 在金融方面,我们对富国银行的增持有助于提高业绩。由于投资者对放松管制和可能取消资产上限的乐观情绪,富国银行的股票表现有所改善。该公司报告的净收入和每股收益较上一季度增加,费用收入增长抵消了净利息收入的阻力。\xe2\x80\xa2 在信息技术领域,我们对 Marvell Technology 的增持有助于提高业绩。Marvell 的数据中心部门实现了显着增长,尤其是在定制人工智能 (AI) 硅片和光电方面。该公司报告称,收入同比和环比均大幅增长,每股收益显著提高。Marvell 与亚马逊网络服务 (Amazon Web Services) 的战略合作伙伴关系以及定制硅片项目的成功提升为其积极的财务业绩做出了贡献。由于产品组合,尤其是定制硅片的收入贡献增加,毛利率面临压力,但管理层已经充分传达了这种组合动态,因此投资者在很大程度上预料到了这一点。
我们分析了跨知名数据集的单标签和多标签文本分类的各种方法,将其分类为单词袋,基于序列,基于图和层次结构的方法。尽管基于图的模型,但仅编码的预先训练的语言模型(尤其是BERT)仍然是最先进的方法。然而,最近的发现提出了更简单的模型,例如逻辑回归和基于Trigram的SVM的表现优于新技术。虽然仅解码的生成语言模型在学习有限的数据方面表现出了希望,但它们却落后于仅编码模型的性能。我们强调了歧视语言模型(例如BERT)比生成模型的优越性。此外,我们高度阐明了文献在方法比较中缺乏鲁棒性,尤其是关于基本的超参数优化,例如仅通过编码器的语言模型中的学习率。数据可用性:源代码可在https://github.com/drndr/multilabel-text-clf上找到。除NYT数据集外,用于我们实验的所有数据集均可公开使用。
高分辨率卫星遥感和计算进步的改进加剧了描绘城市土地的全球数据集的开发,对于了解我们日益城市化的世界中的气候风险至关重要。在这里,我们分析了来自几种此类电流产物的时空尺度上的城市土地覆盖模式。尽管所有数据集都显示出一个迅速的城市化世界,但在1985年至2015年之间,全球城市土地几乎三倍,但城市土地面积估计的估计受到规模,不同的城市定义和方法论的影响。我们讨论了这些差异对几种用例的含义,包括监测城市气候风险以及对城市化引起的对天气和气候从区域到全球范围的影响进行建模。我们的结果表明,选择适合目的数据集的重要性,以检查历史,现在和未来城市化的特定方面,对可持续发展,资源分配以及对气候影响的量化的影响。
摘要口头途径是最方便的,并且在采用新化学实体方面具有很大的有效性;因此,它改善了患者的接受。但是,与此类配方相关的主要局限性涉及不愉快或苦味的味道,以及与化学实体的吞咽和降低和降低的生物利用度有关的问题。在孩子方面,主要限制是他们不能以片剂和胶囊的形式安全地吞下药物。但是,孩子,即使没有牙齿的孩子也可以轻松吞咽果冻。在为每个孩子,品味,颜色,气味,质地和外观的新剂型形式开发中,是改善患者依从性的重要因素。孩子们拒绝再次容忍同种药物,这对于试图服用药物的父母来说是一个大问题。解决此类问题的有效方法涉及儿童友好剂量配方,具有吸引人和醒目的味道,气味,颜色和质地。口服果冻最相同的特征是剂型的形式,即很容易咀嚼和溶解在唾液中,因此不需要水。此外,良好的质地和外观使吸引患者以及提高患者依从性变得容易。最重要的是,它提供了柔软而美丽的质地,不会给患者带来不适。关键字:果冻,胶凝剂,第一频道代谢,改善生物利用度。国际药品保证杂志。2024; 15(2):1023-1034。支持来源:零。利益冲突:无。国际药品保证杂志(2024); doi:10.25258/ijpqa.15.2.73如何引用本文:Komal K,Nilesh K,Vaibhav B,Rakesh A.口服果冻的表述,开发和表征以提高治疗效果。
摘要:土壤有机碳(SOC)在全球碳循环和隔离中起着至关重要的作用,这是对其分布和控制的全面理解的基础。这项研究探讨了各种协变量对使用深度学习方法在本地(高达1.25 km)和大陆(美国)量表的SOC空间分布的重要性。我们的发现突出了地形属性在预测地形浓度分布中的重要作用,在局部规模上贡献了大约三分之一的总体预测。在大陆尺度上,气候在预测SOC分布中的重要性仅比地形高1.2倍,而在当地规模上,地形的结构模式分别比气候和植被的重要性分别高14和2倍。我们强调了地形属性,同时在各个尺度上都是SOC分布不可或缺的一部分,在本地规模上具有更强的预测指标,并具有明确的空间布置信息。尽管这项观察性研究没有评估因果机制,但我们的分析仍然提出了有关SOC空间分布的细微观点,这表明在局部和大陆尺度上,SOC的不同预测指标。这项研究所获得的见解对改进的SOC映射,决策支持工具和土地管理策略有影响,这有助于开发有效的碳封存计划并增强气候缓解措施。关键词:土壤有机碳,地形属性,数字土壤图,深度学习,特征重要性分析■简介
ISDA 衍生品未来领袖发布生成性人工智能白皮书 东京,2024 年 4 月 18 日——国际掉期和衍生品协会 (ISDA) 今天发布了 ISDA 衍生品未来领袖 (IFLD) 的白皮书,这是其针对衍生品市场新兴领袖的专业发展计划。白皮书《衍生品市场中的 GenAI:未来视角》由第三批 IFLD 参与者制定,他们于 2023 年 10 月开始合作。该小组的 38 名成员代表来自世界各地的买方和卖方机构、律师事务所和服务提供商。在被选中参加 IFLD 计划后,他们被要求与利益相关者接触,发展立场并制作一份关于生成性人工智能 (genAI) 在场外衍生品市场中潜在用途的白皮书。参与者还可以使用 ISDA 的培训材料、资源和员工专业知识,以支持该项目和他们自己的专业发展。白皮书借鉴行业专业知识和学术研究,确定了衍生品市场中 genAI 的一系列潜在用例,包括文档创建、市场洞察和风险分析。它还探讨了主要司法管辖区的监管问题,并解决了使用 genAI 所带来的挑战和风险。本文最后提出了一系列针对利益相关者的建议。这些建议包括投资人才发展、促进与技术提供商的合作和知识共享、优先考虑道德 AI 原则以及与政策制定者合作以促进适当的监管框架。ISDA 首席执行官 Scott O'Malia 表示:“人工智能的快速发展引起了金融市场和整个社会的广泛关注。随着技术的进步,genAI 有很大机会支持衍生品市场更高效、数据驱动的决策,但我们需要谨慎对待,确保正确处理该技术的影响和风险。在考虑未来的机遇和挑战时,需要新的视角,因此我赞扬 IFLD 完成这份文件,它为这个快速发展的话题做出了宝贵贡献。” “今年的 IFLD 小组来自不同的机构和司法管辖区,我们在过去六个月中共同探索 genAI 在全球衍生品市场的发展。很明显,这项技术有可能为多个行业流程增加重大价值。我们希望这份报告能够帮助市场参与者、政策制定者和其他利益相关者利用这项技术并应对相关挑战,”IFLD 参与者、瑞穗交易对手投资组合管理部门总监 Takuya Otani 表示。
摘要。Fennoscandian Boreal和山区有各种各样的植被类型,从北方森林到高山苔原和贫瘠的土壤。该区域正面临着超过全球平均水平的空气温度以及温度和降水模式的变化。这将有望改变芬诺斯卡尼斯植被组成,并改变面部土地使用的条件,例如林业,旅游和驯鹿饲养。在这项研究中,我们使用了独特的高分辨率(3 km)气候场景,这是由于强烈增加二氧化碳散发而导致的相当温暖,以研究气候变化如何改变蔬菜组成,生物多样性和适当驯鹿的可用性。使用动态植被模型,包括新的潜在驯鹿放牧的新实施,并在如此长的时间内和空间范围内重新塑造了前所未有的高分辨率的模拟植被图。使用植被清单在当地评估结果,并针对基于卫星的植被图的整个区域进行评估。在六个“热点”区域进行了对威胁物种统计的植被转移的更深入分析,其中包含稀有和威胁性物种的记录。在这种高发射情况下,模拟显示了植被组成的急剧变化,并在本世纪末加速了。令人震惊的是,结果sug-