脑机接口的发展进步预示着在各种疾病状态下恢复、替代和增强丧失或受损的神经功能的潜力。目前开发高带宽脑机接口的方法依赖于侵入性外科手术或穿透大脑的电极,这限制了该技术的可寻址应用和符合条件的患者数量。本文介绍了一种构建神经接口的新方法,包括可适形薄膜电极阵列和微创外科手术输送系统,它们共同促进与大部分皮质表面的双向通信(实现记录和刺激)。我们证明了将包含 2,000 多个微电极的可逆植入物同时输送到大脑两个半球的多个功能区域的可行性和安全性,无需开颅或损伤皮质表面,有效插入速率快于每通道 40 毫秒。我们进一步评估了该系统在植入后立即进行高密度神经记录和可视化皮质表面活动的性能,其空间和时间分辨率和范围在多个临床前大型动物研究以及一项涉及麻醉和清醒神经外科患者的五名患者试点临床研究中是不可能实现的。我们描述了感觉运动活动和言语在皮质表面呈现的空间尺度,展示了对体感、视觉和意志行走活动的精确神经解码,并通过亚毫米级的皮质刺激实现了精确的神经调节。由此产生的系统可生成 90 Gb/h 的电生理数据,并展示了微皮层电图的高度可扩展性及其对下一代脑机接口的实用性,这可能会扩大可从神经接口技术中受益的患者群体。
摘要。可塑性,癌细胞在没有基因组改变的分化状态之间过渡的能力已被认为是肿瘤内异质性的主要来源。它在癌症转移和耐药性中具有至关重要的作用。因此,靶向可塑性具有巨大的希望。然而,癌细胞中可塑性的分子机制仍然鲜为人知。几项研究发现,mRNA充当连接DNA和蛋白质遗传信息的桥梁,在将基因型转化为表型中具有重要作用。本综述概述了通过变化和编辑mRNA进行的调节癌细胞可塑性的调节。讨论了mRNA在癌细胞可塑性中的转录调节的作用,包括结合转录因子,DNA甲基化,组蛋白修饰和增强子。此外,辩论了mRNA编辑在癌细胞可塑性中的作用,包括mRNA剪接和mRNA修饰。此外,阐述了非编码(NC)RNA在癌症可塑性中的作用,包括microRNA,长基因间NCRNA和圆形RNA。最后,讨论了靶向癌细胞可塑性克服转移和癌症治疗性的不同策略。
背景:一种新型的皮下脑电图技术可以对癫痫患者进行超长期监测。本文旨在描述外科医生在早期一系列植入手术中的经历以及参与者所经历的不适或并发症。方法:我们纳入了两项针对癫痫患者和健康成人的试验中的 38 例植入手术。分析了评估外科医生和参与者经验的问卷以及术后 21 天内发生的所有记录不良事件。结果:经过培训,植入可以在大约 15 分钟内完成。总体而言,植入手术被认为很容易执行,只有 2 次植入物固定在引入针中而必须使用新植入物的情况。取出手术被认为毫不费力。在 2 例病例中,取出过程中覆盖导线的硅胶套受损,但可以取出整个植入物而不在皮下留下任何异物。特别是在对健康参与者进行的试验中,一部分参与者在术后长达 21 天内出现了头痛或植入物疼痛形式的不良事件。在 6 例中,不良事件导致决定取出植入物并停止研究:其中四例涉及植入物疼痛或头痛;一例涉及术后局部感染;有一例因放置浅表导线导致植入后几周皮肤穿孔。结论:神经外科医生和耳鼻喉外科医生都认为植入和取出手术快捷且易于操作。大多数参与者对植入物的耐受性良好。但是,与任何此类手术一样,术后长达 21 天内都可能出现头痛或植入物周围疼痛。植入物的预期好处应该始终超过潜在的坏处。
图2:超薄膜轻量化电子器件及柔性电极技术 为了实现不损伤体内软血管的高精度EEG信号测量,如上图2所示,利用薄膜电子技术进行了研发。具体而言,利用厚度1μm的超薄超轻量化电子器件及可伸缩柔性电极技术,进行了实现微创BMI系统的研发。过去的研发成果包括利用生物相容性半导体材料实现信号放大电路、利用光学技术开发控制柔性电子电路特性的技术等。发表论文如下。 ・Science 380, 690 (2023)【影响因子:63.832】 ・Advanced Electronic Materials 2201333 (2023)。【影响因子:7.633】
几年前,科德宝在全球 40 个细分市场开发创新产品和服务。财务稳定性和长期导向是我们与客户建立长期合作伙伴关系的基础。科德宝医疗在全球拥有 50,000 多名员工,拥有独特的专业知识库以及全球研发设施网络。这使我们能够为客户提供从材料和设计优化到成品医疗器械批量生产的支持。
:脂肪垫的萎缩被认为是足底脚跟疼痛的主要原因之一。最近的研究表明,脂肪嫁接增加了脂肪垫的体积增加,并且对治疗踏板脂肪垫萎缩很有益。然而,由于脂肪衍生的干细胞浓度较低,传统的脂肪嫁接率很高。基质血管分数凝胶(SVF-凝胶)作为一种新型的脂肪嫁接,富含脂肪的干细胞,是通过简单的机械过程制备的。这项研究旨在评估SVF-GEL在治疗足底脚跟疼痛方面的功效。方法:在2019年1月至2020年6月之间,有14例经历了足底脚跟疼痛并接受足底脚跟SVF-GEL接枝的患者。脚痛和残疾在筛查访问时以及3月,6个月和12个月的随访访问中测量。通过磁共振成像测量脚跟脂肪垫的体积。结果:四名患者患有双侧足底脚跟疼痛,10例患者患有单侧足底脚跟疼痛。与基线相比,所有患者在SVF-GEL嫁接后3个月的疼痛和脚部功能显着改善,在6个月时的改善最大,效果持续1年或更长时间。此外,脚跟脂肪垫的厚度明显大于3个月的基线,效果持续了1年或更长时间。结论:基质血管分数凝胶嫁接是一种安全,微创和有效治疗足底脚跟疼痛的方法。
了解生物体复杂的神经回路及其功能需要一种专门的工具,该工具能够 (i) 以单细胞分辨率记录大量神经元信号,(ii) 同时以光遗传学方式调节神经元活动,以及 (iii) 维持长期慢性实验的功能,而不会出现明显的组织退化或设备迁移。我们在此介绍一种用于慢性光电生理学研究的超灵活、微创、密歇根型神经探针:flexLiTE(柔性微型 LED 集成光电极)。flexLiTE 包含单片集成的体细胞大小的微型无机 LED(µILED,12 个单独操作)和 32 个记录电极。通过在柔性柄上堆叠两个模块来集成刺激和记录模式,从而形成 115 μm 宽、12 μm 厚、10 mm 长的光电极。通过原型设备,我们展示了 flexLiTEs 在自由移动的小鼠中记录和调节海马神经元超过约 2 个月的可靠运行。
摘要:深层脑显微镜受成像探头尺寸的严重限制,无论是在可实现的分辨率方面,还是在手术可能造成的创伤方面。在这里,我们展示了一段超薄多模光纤(套管)可以取代大脑内部笨重的显微镜物镜。通过创建一个自洽的深度神经网络,该神经网络经过训练可以从套管传输的原始信号中重建以人为中心的图像,我们展示了单细胞分辨率(< 10 µ m)、深度切片分辨率 40 µ m 和视野 200 µ m,所有这些都使用绿色荧光蛋白标记的神经元在距离大脑表面 1.4 毫米的深度处进行成像。由于在体内很难获得这些深度的真实图像,我们提出了一种新颖的集成方法,该方法对来自不同深度神经网络架构的重建图像进行平均。最后,我们展示了移动的 GCaMp 标记的 C . elegans 蠕虫的动态成像。我们的方法大大简化了深部脑显微镜检查。
第 7 层皮质接口:一种可扩展且微创的脑机接口平台 Elton Ho 1*、Mark Hettick 1*、Demetrios Papageorgiou 1、Adam J. Poole 1、Manuel Monge 1、Maria Vomero 1、Kate R. Gelman 1、Timothy Hanson 1、Vanessa Tolosa 1、Michael Mager 1、Benjamin I. Rapoport 1 + 1 Precision Neuroscience Corporation,美国纽约州纽约市和加利福尼亚州旧金山市 * 这些作者对本文的贡献相同 + 通讯作者 摘要 脑机接口的发展进展标志着在各种疾病状态下恢复、替换或增强丢失或受损的神经功能的潜力。现有的脑机接口依赖于侵入性手术或穿脑电极,这限制了该技术的可寻址应用和符合条件的患者数量。本文描述了一种构建神经接口的新方法,包括可适形薄膜电极阵列和微创手术输送系统,它们共同促进了与大部分皮质表面的双向通信(可同时进行记录和刺激)。我们证明了将包含超过 2,000 个微电极的可逆植入物同时快速输送到哥廷根小型猪大脑两个半球的多个功能区域的安全性和可行性,无需开颅手术,有效插入速率快于每通道 40 毫秒,不会损坏皮质表面。我们进一步展示了该系统在高密度神经记录、局部皮质刺激和精确神经解码方面的性能。这样的系统有望加速更好地解码和编码神经信号的努力,并扩大可从神经接口技术中受益的患者群体。