该项目的目标是开发一种即时诊断 (POC) 设备,让患者能够轻松在家进行血液检测。具体而言,该项目旨在从一滴全血中提取血浆,以比色法定量测定血钾水平。该项目范围内的另外两个目标包括:优化用于血细胞定量的光学系统,并结合具有微动控制的微台以提高计数准确性。患有慢性疾病的患者由于长期反复前往医院实验室接受治疗和疾病监测,面临感染医院内感染疾病的风险。SmartMed Case 有可能通过为患者提供能够执行常见实验室血液检测的手持设备来改变当前的实验室血液检测流程。随着 SmartMed Case 的完成,患者将能够在家中方便地检查他们的血细胞计数(白细胞、红细胞和血小板)以及其他疾病指标,例如钾或葡萄糖。此外,它将为医生提供一个 POC 系统,以便轻松运送到发展中国家,帮助识别和控制疾病的传播。
在异质催化剂表面上的化学反应表现出与流体相产物多种途径的基本反应的复杂网络,有时会导致由封闭循环反应途径组成的表面反应环。尽管稳态下的常规催化剂在催化环周围的任一方向上表现出零净通量,但通过微动力学建模评估了三种表面回路的环路周转频率,以评估由两个或更多表面能态之间催化表面振荡的反应环行为。对于经历了表面能的施加振荡(即程序)的动态异质催化剂,显示三种物种的表面反应环在环路周围表现出非零的分子净流,而环更离心频率的程度随施加的频率和平方波振荡的应用频率和扩增而变化。另外,一些动态表面反应仅在两个表面物种之间表现出振荡,或者始终导致一个物种覆盖的表面。对于三个不同电子状态的动态表面程序观察到了更复杂的行为,而施加状态的TEM Poral顺序控制了三分子表面环内分子流动的方向。催化环有可能限制总体催化反应速率并在可编程催化剂中使用能量,而某些应用可能有目的地施加非零的环路转离频率,以改善表面反应控制。
在过去的十年中,预测冲突领域已经发生了显着的变形,从一系列具有低预测能力的孤立努力转变为具有令人印象深刻绩效的大型全球范围的项目。,尽管有这种发展,但仍然存在许多挑战。首先,虽然我们擅长预测绝对风险,但我们在预测冲突动态方面很差(ONSET,升级,降级和终止)。第二,由于我们使用的事件数据的性质,我们在时空特征和机械模型上过度稳定,因此不包括Actor代理。第三,我们不处理数据或模型不确定性。第四,我们落后于机器学习的最先进。本论文试图通过为当前产生预测系统的六个核心要素做出贡献来解决其中一些显着困难。首先,通过查看数据和预测范围之间时间距离的实质效果和不确定性。第二,空间,通过查看高分辨率地理空间数据的固有不确定性,并提出了一种解决此问题的统计方法。第三,特征空间,通过解决事件数据中的极端特征稀疏,并提出了一种新颖的,深厚的活跃学习方法,以从现有的大型冲突相关文本中心地讲述特征。第四,实质性知识,结合了以前的论文的发现,以重新研究冲突升级的微动力学。论文中的六篇论文表现出显着的性能提高,尤其是在预测动态方面。第五,预测过程本身,通过构建直接预测文本的模型,消除了手动数据策划的中间步骤。最后,事件数据的前沿,通过查看新闻媒体的沉重方式我们收集暴力致命事件的重大方式可以扩展到非暴力事件的收集。从方法论上讲,论文将最新的方法引入了该领域,包括使用大语言模型,高斯流程,主动学习和深度时间序列建模。
特别有用,可将跳动和/或旋转驱动对模仿生物学微晶状体的微动体。开创性的例子是Dreyfus等人建造的游泳者。由一连串的杂志珠束缚在红细胞上。[25]在这里,游泳是以衍生方式诱导的精子,也就是说,通过击败支持弯曲波传播的柔性附属物。自从这一突破以来,已经制造了其他几种生物启发的磁性微晶状体,包括由定制的微型磁铁,软磁复合材料和众多体系结构制成的,其中磁性区域会使非磁性鞭毛/附属物依赖。[13,15,16,20,26–29]越来越多地,正在研究附属物对游泳性能的作用,这表明游泳速度随生物学和合成系统的长度,弹性和中风频率而变化。[15,26,28,30]此外,已经确定,生物微晶状体的集体相互作用非常依赖于耦合的鞭毛(附录)动力学和流动在亚氟lagellum长度尺度上产生的动力学。[30]这些相互作用在本质上被利用以促进性能:例如,小鼠精子形成长列火车以提高其速度。[7,10,30–33]然而,对合成系统的附属物设计的严格控制仍然是征税,当需要纳米级特征时,更是如此。通过Maier等人采用的DNA自我组装是DNA的一种特别有希望的方法。基于DNA瓷砖管束生成合成的鞭毛。[26]将这些束式水力组装成旋转的磁珠时,将水力组装成类似几微米的开瓶器样式确认,以类似于细菌的方式驱动翻译运动。尽管组装技术允许对合成鞭毛的扭曲和刚度进行精美的控制,但它们的长度受到寡聚和不受控制的影响。在这种交流中,我们以Maier等人的工作为基础。使用替代DNA自组装策略DNA折纸。此处,通过单链核苷酸的单链DNA环通过单链DNA低聚物的特定结合以构建定位的纳米级附件,以预先确定的方式折叠。[34–37]我们提出了一种调节附属物覆盖磁珠上均匀或用断裂的对称性的方法。通过时间依赖的磁场摇动这些构建体,我们发现虽然结构完全覆盖了DNA折纸,但在很大程度上表现出了
开发正电子发射断层扫描示踪剂以检测错误折叠的聚集体SYN将彻底改变早期诊断,疾病监测和评估治疗功效。在这里,我们介绍了[11 C] MODAG-005的体外和体内验证的发育和临床前的验证。体外结合实验证明了与重组纤维纤维以及人脑组织中的syn夹杂物的亚洋摩尔结合亲和力。使用自显影和微动摄影术检测到多系统萎缩(MSA)脑组织中的特异性结合,并通过免疫染色进行了验证。体内,[11 C]模量-005显示出良好的脑穿透性,脑组织的快速清除以及啮齿动物和非人类灵长类动物的代谢产物低的代谢产物形成。此外,在syn fibril注射的大鼠模型和syn(A30p)转基因小鼠模型中,在与病理载荷相关的syn fibril大鼠模型中达到了明显的结合和良好的信噪比。为了验证其在治疗发展中的价值,我们显示了候选药物Anle138b在SYN(A30p)小鼠和MSA的脑组织中的目标参与,以及在syn fibril注射的大鼠中的体内。最后,我们在临床上建立MSA的第一个人类患者中的翻译方法显示,在受Syn病理学影响的区域中,示踪剂的结合具有明显的示踪剂结合,尤其是在纹状体中,该模式与多巴胺转运蛋白转运蛋白转运蛋白单光子发射计算机进行计算计算计算机的神经变性相对应。目前仅通过验尸尸检才有可能进行确定的诊断[1]。在阿尔茨海默氏病(AD)中,突触核酸症,例如帕金森氏病(PD),痴呆症患有路易的身体(DLB)和多个系统萎缩(MSA),是神经退行性疾病,对我们的衰老社会构成了重大威胁。他们共同的神经病理学标志是存在错误折叠的syn的存在,它在大脑中的空间分布依赖于阶段和疾病的类型。病理学的积累开始在第一次(运动)症状发作之前的几年开始,因此将是早期检测和监测疾病进展的极好的生物标志物[2]。正电子发射断层扫描(PET)是一种非侵入性成像技术,可追溯到为体内特定生物学靶标设计的放射性标记的分子[3]。
•Zolgensma可以增加肝酶水平,并导致急性严重的肝损伤或急性肝衰竭,这可能导致死亡。•患者将在输注Zolgensma之前和之后接受口服皮质类固醇,并经过定期的血液检查以监测肝功能。•如果患者的皮肤和/或白色的眼睛显得淡黄,如果患者错过了一定剂量的皮质类固醇或呕吐,或者患者的警觉性降低,请立即与患者的医生联系。在注入Zolgensma之前和之后我应该注意什么?•Zolgensma输注前或之后的感染会导致更严重的并发症。护理人员和与患者的密切联系应遵循预防感染程序。如果患者经历了可能感染的任何迹象,例如咳嗽,喘息,打喷嚏,流鼻涕,鼻子,喉咙痛或发烧,请立即与患者医生联系。•在输注Zolgensma后可能会减少血小板计数。如果患者出现意外出血或瘀伤,请立即进行医疗护理。•据报道,血栓形成微动病(TMA)通常在Zolgensma输注后的前两周内发生。如果患者经历了TMA的任何迹象或症状,例如意外的瘀伤或出血,癫痫发作或尿量减少,请立即寻求医疗护理。•具有基因疗法(例如Zolgensma)存在肿瘤发展的理论风险。如果肿瘤发展,请联系患者的医生和诺华基因治疗公司(1-833-828-3947)。请咨询患者的医生。我需要了解有关疫苗和Zolgensma的知识?•与患者的医生交谈,以决定是否需要调整疫苗接种时间表以适应皮质类固醇的治疗。•建议对流感和呼吸道合胞病毒(RSV)进行保护,并且在Zolgensma给药之前应最新疫苗接种状态。我需要对患者的身体浪费采取预防措施?•暂时,在患者的粪便中可能会发现少量的Zolgensma。在与Zolgensma注入后一个月直接接触患者体内废物时,请使用良好的手卫生。一次性尿布应用一次性垃圾袋密封,并用常规垃圾扔掉。Zolgensma有什么可能或可能的副作用?在接受Zolgensma治疗的患者中最常见的副作用是肝酶升高和呕吐。此处提供的安全信息并不全面。与患者的医生谈论困扰患者或不会消失的任何副作用。,鼓励您通过通过1-800-FDA-1088或www.fda.gov/medwatch或Novartis Gene Therapies,Inc。与FDA联系,以报告可疑的副作用,致电1-833-828-3947。请参阅完整的处方信息。
使用固态霍尔传感器阵列对小口径管道系统中的涡流进行实时可视化的回顾 J. Lee、C. S. Angani、J. Kim、M. Le,朝鲜大学,韩国 Hwa Sik Do,韩国电力公司,韩国 摘要 小口径管道系统是核电站 (NPP) 热交换器的重要组成部分,例如蒸汽发生器 (SG),其中的压力和温度非常高。这些条件会促使裂纹的产生和快速扩展,从而降低管道质量并威胁系统的完整性。几十年来,人们开发和改进了不同的 NDE 系统和探头,以应用于 SG 评估,例如用于实时检查裂纹的线轴探头、电动旋转饼线圈、X 探头和磁性摄像机。磁相机由固态磁场传感器阵列组成。根据传感器阵列的排列方式,开发了不同类型的传感器阵列,并对其进行了分类,以用于不同的应用,例如线性集成霍尔传感器阵列 (LIHaS)、区域型集成霍尔传感器阵列 (AIHaS)、线轴型集成霍尔传感器阵列 (BIHaS) 和圆柱型集成霍尔传感器阵列 (CIHaS)。本研究回顾了用于评估 SG 缺陷的线轴型磁相机的开发。使用霍尔传感器阵列可以提供具有高空间分辨率的大面积检查。传感器的高空间分辨率优势使得裂纹评估变得简单可靠。所提出的磁传感器阵列用于检测小口径管道的内径 (ID)、外径 (OD) 和周向应力腐蚀裂纹。准备了两种样品,铜和钛合金,以验证磁相机的有效性。成功检测到由于应力腐蚀裂纹引起的扭曲磁场图像并估计了裂纹体积。结果表明,该技术可以成为核电站中 SG 的无损检测的潜在工具。简介 管道结构在大型工业结构中起着关键作用,例如发电厂、石化厂、石油炼油厂和天然气加工厂 [1]。例如,用作核电站热交换器的小口径管道系统。SG 是核电站最关键的部件,它们在高温和高压等极其恶劣的条件下运行,这些条件往往会加速流动腐蚀 (FAC)、应力腐蚀开裂 (SCC) [2]。小由此可能引发裂纹,并可能导致灾难性故障或工厂紧急停机。因此,为了确定结构的可靠性和经济可行性,NDT 是检测和评估结构损坏程度的有效技术。因此,快速准确地检查管道中的裂纹或缺陷对于防止故障非常必要。SG 通常采用奥氏体镍铬基高温合金和非铁磁性钛合金制造。通常,核电站安装 2 至 4 套 SG 管,每套由 3,000 至 16,000 根管组成,SG 直径约为 20 毫米,长度约为 21 米 [3, 4]。几十年来,涡流检测 (ECT) 已可靠地应用于无损检测领域,线轴探头已成为 SG 和热交换器管道常规检查的行业标准 [5, 6]。线轴探头非常可靠,可用于量化体积缺陷,例如微动磨损和点蚀,相反,它们不适合检测周向裂纹 [7]。此外,ECT 需要很高的检查技能来分析和评估数据 [8, 9]。