16. 摘要 本研究的重点是使用机载激光雷达 (LiDAR) 数据探测塌陷灾害。前提是塌陷,特别是靠近交通基础设施资产的塌陷,可能会对基础设施资产造成重大损害,因此,能够准确、快速地探测到它们至关重要。然而,使用传统的地面观测方法勘测塌陷既昂贵、耗时、费力又不安全。本研究项目专注于开发准确、快速的基于机载激光雷达的塌陷探测和测绘方法,并将技术转让给交通工程师进行实施和劳动力开发。项目团队还确定了实施国家级塌陷灾害管理系统 (SHMS) 的最佳实践。此外,还为专业教育和培训开发了基于机载激光雷达的塌陷探测和测绘指南。激光雷达探测现有塌陷的有效性受到的关注非常有限。大多数基于 LiDAR 的天坑检测研究都假设基于形态学的表面特征提取方法可以有效检测天坑,因为它们具有几何特性——天坑是地球表面的椭圆形凹陷。然而,由于地形各异,天坑的大小、形状和外观各不相同,这给进一步改进检测带来了更大的挑战
阅读您的消息 VA 内的各个部门可能会向您发送消息,这些消息可能涉及各种主题,从请求到根据您最初提供的信息完成后续问题,或在您请求资格审查后 VA 的回复。如果您收到了新消息,登录应用程序时,您将在屏幕顶部看到一条通知横幅,上面写着:“您有一条新消息。单击此处查看。” 您可以通过 (1) 在通知消息中单击此处访问消息,或 (2) 选择屏幕右上角的消息 > 您将转到显示您的消息、日期和发件人的屏幕。如果您查看了一条新消息,通知横幅将消失,但您始终可以通过再次选择屏幕顶部的消息来查看该消息。
摘要。将选择性湿法蚀刻技术应用于商用(2 ̅ 01)β-Ga 2 O 3 单晶衬底。一些蚀刻配方使我们能够在衬底表面上显示出尖锐的蚀刻坑。在交付的样品中研究了蚀刻坑的几何形状、方向和密度。对蚀刻坑相互位置的观察表明,加热后可能形成小角度晶界。将选择性湿法蚀刻技术应用于商用(2 ̅ 01)β-Ga 2 O 3 单晶衬底。一些蚀刻配方使我们能够在衬底表面上显示出尖锐的蚀刻坑。在交付的样品中研究了蚀刻坑的几何形状、方向和密度。对蚀刻坑相互位置的观察表明,加热后可能形成小角度晶界。关键词:选择性湿法蚀刻,β-Ga 2 O 3,氧化镓,半导体,晶体衬底,小角度晶界
在2020年4月,内阁批准了监管修正案,以使艾伯塔省能源调节器(AER)能够针对需要借用材料建造道路,垫子等的石油和天然气运营商发出表面材料处置(在某些条件下)。支持能源活动。在四月的监管修正案之前,石油和天然气运营商可以向AER申请以获得临时现场授权(TFA)或向艾伯塔省环境和公园(AEP)申请,以供更大的发掘供借用物质需求。该系统无意间偏爱多个较小的TFA,其中一个较大的坑可能更合适。多个小坑而不是一个较大的坑的累积影响会导致整体上更大的土地基础分裂,终端土地使用的损失或转换(例如,森林覆盖到水填充水坑),延迟到达最终的回收或最终土地使用状态,以及潜在的累积累积工业足迹。调节框架的变化旨在解决这些差距,并确保表面材料提取不管调节器如何公平且一致。石油和天然气行业将这项工作确定为减少繁文tape节的机会。管辖权更改
作为一种新的污染物,微塑料(MPS)以其对不同生态系统和生物体的负面影响而闻名。MPS因其小体积而被生态系统轻松地以各种或Ganism的形式吸收,并在受影响的生物体中引起免疫,神经和呼吸道疾病。此外,在受影响的环境中,MP可以释放有毒的作用,并充当特定微生物定植和运输的载体和支架,并导致微生物群和生物地球化学和营养素动态的失衡。为了解决控制MPS对微生物群和生态系统污染的担忧,MPS的微生物生物降解可能被视为有效的环境友好方法。提出的论文的目标是提供有关MPS对微生物群的毒理作用的信息,以讨论MPS微生物定植的负面影响,并以MPS的生物降解能力引入微生物。
摘要 从激光雷达数据中得到的冠层高度模型 (CHM) 已被用于提取森林资源清查参数。然而,建模高度的变化会导致数据凹陷,这是一个具有挑战性的问题,因为它们会破坏 CHM 的平滑度,对树木检测和随后的生物物理测量产生负面影响。这些凹陷出现在激光束深入树冠的地方,在产生第一次回波之前,激光束会击中下部树枝或地面。在本研究中,我们开发了一种新算法,该算法通过使用激光雷达点的子集来封闭凹陷,从而生成无凹陷的 CHM 栅格。该算法在高密度激光雷达数据和细化激光雷达数据集上都能稳定运行。评估包括使用无凹陷 CHM 检测单棵树木,并将结果与使用高斯平滑 CHM 的结果进行比较。结果表明,我们从高密度和低密度激光雷达数据中得到的无凹陷 CHM 显著提高了树木检测的准确性。
摘要。天坑会导致许多交通基础设施资产下沉和坍塌。因此,交通基础设施管理机构投入了大量的时间和金钱来检测和绘制天坑地图,作为其资产管理计划的一部分。传统上,天坑是通过区域侦察来检测的,包括对场地进行目视检查以确定现有的天坑,或对场地进行设备检查以确定潜在的天坑或以前填满的天坑。另一种检测天坑的方法是通过查看地图,例如地质图。这些方法既昂贵又耗时,而且劳动强度大。遥感技术的最新进展,尤其是机载光探测和测距 (LiDAR),可以准确、快速地检查地球表面海拔的变化。本研究的重点是开发一个使用机载 LiDAR 检测和绘制天坑的概念框架。这个概念框架为未来将机载 LiDAR 用于天坑检测和绘制奠定了基础。
1引言4 2摘要5 3招标设计7 3.1坑存储的位置7 3.2坑存储的几何形状8 3.3膜和盖解决方案8 3.4入口和出口9 3.5水质9 3.5水质10 4风险评估11 5底部和侧面的衬里选择12 6 6 6 6 6 6 6 6 6盖溶液的选择。Floating Liner 16 6.1 Insulation Materials 16 6.2 Arcon Sunmarks/Aalborg CSP's Lid Solution 17 6.3 Choice of Lid for the Pit Storage in Høje Taastrup 18 6.4 Conclusion 20 7 Construction of the Pit Thermal Energy Storage 22 7.1 Original Schedule and Delayed Construction Start 22 7.2 Establishing Excavation and Inlet and Outlet Arrangements 22 7.3 Establishing the Liner Contract 23 7.3.1 Leakage 1 24 7.3.2 Leakage 2 24 7.4重新建立衬里合同25 7.5填充过程中的水填充和保护27 7.6泄漏3 29 7.7浮动衬里安装30 7.8安装盖子安装和测量设备30 7.9在水下无人机35 85 8处理,测试和测试和调试36 8.1移交4.2移交4.2移交41 41的工程41 41的工程均匀35. 3.1盖合同42 9经济43参考43
