2 理论 3 2.1 电磁辐射基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ...
摘要智能设备和无线设备数量的增加需要在较高频率频谱中进行更灵活的分配。动态频谱访问是解决频谱稀缺问题的主要候选者之一。电视白色空间(TVWS)提供了一种手段,可以随着传统的电视广播向数字广播的逐步切换而考虑到机会意义上的电视频带。带有迷你,微型或纳米电路包装中的智能设备,主要挑战之一是设计紧凑型收发器天线,适用于以超高频(UHF)频段运行的移动设备。本文简要概述了TVWS和提议的微带贴片天线设计。在MATLAB中设计和模拟了几何测量和天线参数。结果表明,在638 MHz工作频率和辐射模式下的高前到背部功率比下具有共振性能。辐射特性在方位角几乎是全向方向的,而在高度平面则是方向性的。后面有最小的辐射,因此,对于薄而纤细的设备,这将适合所需的应用关键词:认知无线电,微带,电视,白色空间1。引言无线通信的进步需要在较高频谱中利用更多的电磁频带,以在轻范围通信通道上增加带宽的能力。由于针对各种应用程序发明和制造了新的和创新的通信设备,因此频率资源的稀缺性也会增加。为了解决这个问题,正在利用一种称为动态频谱访问(DSA)的技术,该技术允许以有效有效的方式访问频段。数字切换或模拟电视频段被切换到数字格式允许使用
用于控制微带线馈电设计的参数主要包括带状线长度和宽度变化以及贴片的长度和宽度。馈线控制天线的回波损耗。为了提高效率,回波损耗应该较小。端口尺寸控制总带宽。为了增加带宽,端口也应该与馈线匹配。工作频带由天线的高度控制,最后贴片控制中心频率。该技术提供 0.1GHz 带宽,从 -15dB 开始考虑。该设计的回波损耗图如图 7 所示。匹配主要通过控制贴片的尺寸来实现。回波损耗图给出中心频率 12.7 GHz 处的 - 21.2dB。
在底部的铜接地处,厚度为0.035 mm。同轴电缆用于在一个在50Ω上提供更好匹配的阻抗的点来喂食天线。这种结构是用商业软件HFSS v19。模拟的简单微带天线的模拟结果,散射系数(S 11)而没有加载超材料的散射系数在9 GHz时为-36.33 dB。超材料基本上是人为设计的周期性结构,与常规材料相比,具有不同的电磁特性。me-Tamaterials具有负折射率,这在自然杂物中未发现,这是Veselago在1968年首次假设的[6] [6]。这些设计的周期结构在某些频率上引起共鸣,并能够以光的形式吸收电磁辐射。基于ε(介电常数)和μ(渗透率)值的负折射率的理论背景。以:
b'摘要 提出了一种毫米波\xe2\x80\x90 低\xe2\x80\x90 轮廓宽带微带天线。为了加宽阻抗带宽并同时实现稳定的大增益,在由同轴探针馈电的微带贴片两侧布置共面寄生贴片阵列。在微带贴片上蚀刻双槽以降低 H \xe2\x80\x90 平面交叉\xe2\x80\x90 极化水平。提出了使用 Floquet \xe2\x80\x90 端口模型进行零\xe2\x80\x90 相位\xe2\x80\x90 反射分析以预测寄生贴片阵列的谐振频率。根据理想探针的输入阻抗来验证激发的谐振模式。依次激励两个相邻的宽边谐振,分别以微带贴片的准 \xe2\x80\x90 TM 10 模式和寄生贴片阵列的准 \xe2\x80\x90 TM 30 模式为主导。所提出的天线尺寸为 1.06 1.06 0.024 \xce\xbb 0 3(\xce\xbb 0 为自由空间中 29 GHz 的波长),在 | S 11 | \xe2\x89\xa4 10 dB 时实现 15%(27\xe2\x80\x93 31.35 GHz)的阻抗带宽。实现的峰值增益高达 9.26 dBi,2 \xe2\x80\x90 dB 增益带宽为 15.7%。 H \xe2\x80\x90 平面交叉 \xe2\x80\x90 极化水平在 3 \xe2\x80\x90 dB 波束宽度内小于 14 dB,背部辐射水平小于 17.9 dB。'
摘要 - 最近,由于其固有的快速转弯,自定义建模,更容易的制造和具有成本效益的实现的功能,因此,近期是针对原型复杂和共形射频(RF)电路的一种非常有效的解决方案。一种可商购的导电丝,伊维利(Electifi)最近被多个研究人员报道,作为使用增材制造技术替换印刷电路板上传统铜痕迹的潜在候选者。使用融合细丝制造方法的添加剂制造方法,本文根据针对太空出生应用的Planar TMM4基板的改进的导电电丝丝的改进版本提出了3D打印的微带贴片天线,例如,3D印刷的卫星,太空层次套件,以及零层次的实验等。也是NASA的最新利益。此外,此处还介绍了全波模型与天线的3D打印原型之间的详细比较分析。针对合适的空间应用,天线尺寸已针对S波段(2 - 4 GHz)的2.56 GHz的工作频率进行了优化。
摘要圆形微带贴片天线(CMPA)的增益和带宽增强的设计已通过使用用作超级材料的矩形金属板中的圆形凹槽进行了提出。提出的概念是独特的,并且简单地作为增强增益和带宽的灵活方法。矩形形状的泡沫间隔剂已用于提供机械支撑,以放置优化的凹槽蚀刻矩形金属板超材。拟议的天线提供了约35.5%的阻抗匹配带宽在8.45 GHz至12 GHz之间的带宽,总带宽为3.55 GHz,而传统的圆形贴片为9.95 GHz,几乎显示了势不足的带宽(480 MHz)的4.8%,大约显示了4.8%的抗衡。峰值增益为7dbi。除了增强的带宽特征co-pol。在整个操作频段中保持10DBI的峰值增益。与常规CMPA相比,实现了3DBI增益。对于实验验证,已经使用市售介电底物制造了一组天线原型。测得的结果显示与模拟预测相似。关键字:带宽,圆形贴片天线,圆形凹槽,超隔板
摘要 本文介绍了一种 H 形微带贴片天线的设计,用于评估甲状腺癌细胞检测的 SAR(特定吸收率)。该天线灵活,适用于可穿戴应用。当天线放置在人体甲状腺上时,性能可能会发生变化。测量了回波损耗、增益、VSWR 等参数。天线有不同的种类,但微带贴片天线具有成本低、体积小、重量轻等特点。FR-4(有损)用作基板以克服低增益和高回波损耗。贴片导体由铜材料制成,形成柔性天线。所提出的天线设计为 1g 带肿瘤组织提供了 0.0199W/Kg 的高 SAR 值。由于癌细胞含有更多的水分,因此可以在所提出的天线设计中改变各种参数的性能。所提出的天线的增益值为 16.452GHz 时的 6.36 dB。所提出的 H 形和 H 形垂直缝天线的甲状腺模型是使用 CST(计算机仿真技术)微波工作室工具设计的。关键词:电压驻波比、回波损耗、增益、特定吸收率
摘要 天线设计的主要目的是为集成天线的应用实现良好的增益和带宽。但是,使用单个贴片天线无法实现这一目标。本研究的目的是设计一个用于 WiFi 应用的单元件微带贴片天线。该天线的介电常数为 = 4.4,旨在在 4.7GHz 频率下工作。对单微带贴片和双微带贴片的研究表明,当贴片元件数量增加时,增益会加倍。因此,在保持单个贴片尺寸的同时,将贴片数量加倍最终也会使增益加倍。这种天线在通信领域的馈电网络和射频辐射中有着广泛的应用。贴片天线的主要优点是成本低、性能好、安装方便、外形小巧。贴片天线采用适当的设计方程设计,并根据实际结果进行测试,以确保其模拟结果与实际结果相符。本文介绍了使用适当方程设计单元件和双元件贴片天线以应用于 Wi-Fi 通信的方法。该天线采用 FR4 基板制造,并将其增益、回波损耗、阻抗和 VSWR 的模拟结果与实际结果进行了比较。这种类型的天线最初是为无线电设计的,但现在也用于 802.11 网络系统,以及在 WiFi 网络上工作的无线路由器和小工具。这些天线的优点是它们通常非常具有方向性,并且适用于点对点和点对多点连接。关键词:馈电网络、贴片天线、低剖面和 FR4 基板
基板厚度 6.1 简介................ ............. 6-1 6.2 带宽定义。6.3 根据测量结果确定带宽 6.4 计算薄天线元件的阻抗带宽。6.5 计算厚天线元件的带宽.... 6.6 结果与讨论 6.7 结论
