确保足够数量的高质量幼虫的可用性仍然是水产养殖阶段的重要瓶颈。在过去的一个世纪中,已经探索了各种幼虫阶段的替代饮食解决方案,包括细菌,微藻糊,酵母和各种惰性微粒,尽管结果不一致。本综述旨在讨论益生菌在微循环中的创新整合,突出显示封装,涂料和发酵技术以推动水产养殖生产率。微法经常富含营养且易于以粉状或液体形式吸收,在幼虫鱼营养中起着至关重要的作用。可以将这些分类为微封装,干燥,液体和活饲料。微鳍的选择是关键,可确保针对每个幼虫阶段量身定制的吸引力,消化率和水稳定性。由于益生菌在水产养殖中的潜力增强,增强疾病耐药性和提高水质的潜力,其给药方法已经多样化。益生菌可以通过直接浸入和浴处理对生物氟氟氯洛克系统和饲料添加剂进行管理。结果表明,与益生菌合并的微局面对水产养殖业有积极的影响。
左心室功能障碍的急性,瞬态发作是Takotsubo综合征的特征。它代表所有急性冠状动脉综合征(ACS)的所有病例中的2%,并且主要发生在绝经后妇女中,通常是遵循明显的身体或情感压力源。可以根据临床症状和血管造影的冠状动脉疾病诊断。心室术仍然是诊断的金标准。尽管其短暂性特征特征塔takotsubo综合征不应被视为良性疾病,因为并发症发生在几乎一半的患者中,而死亡率达到4-5%。最近,由于大规模释放儿茶酚胺导致心肌功能障碍,Takotsubo综合征也可能导致永久性心肌损伤。已经采取了不同的机制来解释这种迷人的综合征,例如斑块破裂和血栓形成,冠状动脉痉挛,微循环功能障碍,儿茶酚胺毒性以及心肌存活途径的激活。这里仍然存在一些需要研究的Takotsubo综合征:心脏与大脑之间的复杂关系,永久性心肌损害的风险以及心肌细胞的损害。我们的综述旨在阐明这种复杂疾病的病理生理学和机制,以管理诊断和治疗算法,以在医生和患者之间产生功能协同作用。
纵隔和心包(解剖学)1 - 心腔、瓣膜、传导系统和心脏神经支配(解剖学)2 - 心脏的发育(解剖学)3 - 心脏血管的组织(生理学)4 - 心肌和血管的组织学(解剖学)5 - 心脏血管的表面解剖学(解剖学)6 - 心肌的生理学(生理学)7 - 心电图(生理学)8 - 心律失常(生理学)9 - 抗心律失常药物(药理学)10 - 心动周期(生理学)11 - 心输出量及其调节(生理学)12 - 心脏的泵送(生理学)13 - 生理和病理条件下心肌的代谢(生物化学)14 - 心肌炎的微生物学(病理学)15 -心脏瓣膜疾病。风湿热和风湿性心脏病 1(病理学) 16 - 心内膜炎心肌炎(病理学) 17 - 心肌病 - 心包和心脏肿瘤(病理学) 18 - 心脏酶和其他蛋白质标记物(生物化学) 19 - 血管 I-动脉系统(解剖学) 20 - 血管 II - 静脉系统(解剖学) 21 - 血管系统的发育(解剖学) 22 - 血压(生理学) 23 - 微循环(生理学) 24 - 血浆脂蛋白和胆固醇(生物化学) 25 - 动脉硬化动脉粥样硬化(病理学) 26 - 抗高血压药物(药理学) 27 - 高脂血症(药理学) 28 - 用于治疗心力衰竭的药物(药理学) 29 -
肥厚性心肌病(HCM)是一种心脏肌肉疾病,其特征是左心室通常不对称异常肥大,没有异常负荷条件(例如高血压或瓣膜心脏病)[1]。HCM是一种常染色体 - 遗传性心肌病,在30%–60%的病例中鉴定出编码肉瘤蛋白的基因中的突变[1]。这种遗传突变的存在载有超过2倍的心室心律风险。遗传和心肌底物,包括纤维化,心室肥大和微血管缺血,起着心律失常决定因素的作用[1]。心肺运动测试似乎改善了当代SCD风险分层的策略[2-4]。但是,针对HF和心肌病的新药的开发应集中于对心肌细胞,冠状动脉微循环和心肌间质的直接影响。对肾小球和心肌细胞生物学的详细知识至关重要[5]。心肌间质是心肌内的精致和活跃的微疗法[6]。HF纤维化的纤维化变化和毛细血管近的纤维化变化由细胞外基质(ECM)膨胀和I型胶原蛋白的肌纤维细胞分泌[5]。一种心脏磁共振成像技术,T1映射,在人心肌中测量了细胞体积的分数[ECV],可以区分间质(心肌细胞和结缔组织)的不同成分,并具有更精确的心肌纤维化定义[5]。
摘要:心肌梗塞(MI)是心血管疾病死亡的主要原因。快速诊断和有效治疗对于改善患者预后至关重要。尽管当前的诊断和治疗方法已经取得了重大进展,但它们仍然面临诸如缺血 - 再灌注损伤,微循环疾病,不良心脏重塑和炎症反应等挑战。这些问题强调了迫切需要创新解决方案。纳米材料具有多种类型,出色的理化特性,生物相容性和靶向能力,在应对这些挑战方面具有有希望的潜力。纳米技术的进步越来越多地引起人们对纳米材料在诊断和治疗心肌梗塞中的应用。我们总结了心肌梗塞的病理生理机制和分期。我们系统地回顾了纳米材料在MI诊断中的应用,包括检测生物标志物和成像技术以及在MI治疗中,包括抗氧化作用,抗氧化剂应激,抗纤维化,纤维化的抑制,促进血管生成以及心脏传导修复。我们分析了现有的挑战,并提供了对未来研究方向和潜在解决方案的见解。具体来说,我们讨论了对严格的安全评估,长期疗效研究的需求,以及将实验室发现转化为临床实践的强大策略的发展。总而言之,纳米技术作为诊断和治疗心肌梗塞的新策略具有重要的希望。它可以增强临床结果并彻底改变患者护理的潜力,这是在现实世界中使用实际应用的令人兴奋的研究领域。关键字:心肌梗塞,纳米材料,纳米颗粒,诊断和治疗
分化的甲状腺癌(DTC)(1)包括乳头状甲状腺癌(PTC),卵泡甲状腺癌(FTC)及其变异亚型(2),是最常见的内分泌恶性肿瘤,并且最近几年的发病率迅速增加。DTC通常具有良好的预后,碘131治疗和甲状腺抑制剂已被证明对10年生存率的患者有益,范围为80%至95%(3,4)。然而,大约5%-20%的病例可能由于基因突变引起的肿瘤生物学变异,导致不同的亚型和预后不良,这可能与高度浸润性肿瘤的生物学特征有关(5)。因此,甲状腺结节的鉴别诊断仍然很明显。对比增强超声(CEU)可以实时评估组织的微循环灌注(6),提供准确可靠的数据,并且可以避免由个体差异引起的诊断错误(7)。由于甲状腺正常组织中的微容器的丰度,它显示出造影剂后的快速和均匀增强。然而,甲状腺结节具有不同的血管生成模式,并且CEUS上的表现可能不同(8)。先前的研究报道了甲状腺结节的CEUS特征,但是,大多数是基于结节内部(9-11),而CEUS上甲状腺结节的增强模式仍然没有足够的能力来诊断甲状腺癌(12)。到目前为止,只有一项研究重点介绍了结节周围区的CEU特征(13)。这项研究的目的是通过研究甲状腺结节的内部和外围区域的定性和定量参数来评估CEU在DTC的鉴别诊断中的价值。
背景:妊娠期糖尿病是新生儿听力损失的潜在危险因素。妊娠期间母亲体内循环糖分增加会损害微循环,并可能导致内耳先天性异常,从而导致先天性听力损失。糖尿病母亲所生新生儿的耳聋患病率为 4.16%。耳声发射 (OAE) 和脑干诱发反应听力检查 (BERA) 用于评估听力障碍。方法:这项前瞻性病例对照研究由妇产科开展,研究对象为 92 名年龄在 21 至 35 岁之间的产前母亲,根据她们的妊娠期糖尿病状况将她们分为两组。所有这些新生儿均按照通用方案在出生后 72 小时内和第 10 天使用 OAE 进行听力筛查。本研究旨在确定妊娠期糖尿病对新生儿听觉功能的影响。结果:本研究共选取 92 名孕妇,分为 A 组和 B 组,平均年龄为 27.8±5.4 岁。在出生后 72 小时内进行的评估中,A 组 39.1%(18)的新生儿 OAE 未通过,而 B 组仅有 8.7%(4)的新生儿 OAE 未通过。患有妊娠期糖尿病的母亲所生的孩子患先天性听力损失的风险高出 6.7 倍。结论:本研究表明妊娠期糖尿病与新生儿听力障碍之间存在显著关联。与非妊娠期糖尿病母亲所生的新生儿相比,GDM 母亲所生的新生儿 OAE 筛查的失败率更高。关键词:妊娠期糖尿病、新生儿、听力、OAE
简介门脉高压症 (PHTN) 是肝硬化的后果,也是肝硬化患者进行肝移植和死亡的主要原因 (1) 。根据欧姆定律的液压当量,门脉压力由血流量和阻力决定。因此,PHTN 的病理生理学可归因于血流量增加、血管阻力增加或两者兼而有之 (2) 。肝窦内皮细胞 (LSEC) 形成肝窦的通透性屏障,是肝脏微循环和门脉压力的重要调节器 (3) 。研究表明 LSEC 会在 PHTN (1) 进展过程中启动肝窦重塑。当暴露于肝损伤时,肝窦会发生重塑,LSEC 窗孔会丢失,形成有组织的基底膜(该过程称为毛细血管化)(4) ,以及肝窦血管生成 (5) 。毛细血管化的肝窦具有基底膜形成,导致肝窦僵硬,从而导致肝血管阻力增加和 PHTN 的发展 (1)。同时,毛细血管化的 LSEC 具有普通内皮细胞的表型,可以从已有的血管床形成新血管,这一过程称为血管生成 (6, 7)。肝内循环中血管生成引起的血流增加会导致 PHTN。然而,肝窦重塑的潜在机制尚不清楚。炎症信号也通过影响肝窦重塑而导致 PHTN (5)。我们团队和其他团队先前发表的论文表明,炎症刺激(8、9),包括 TNF-α 刺激,会导致 LSEC 表型的丧失(9),并导致随后的异常血管分泌信号传导,从而募集免疫细胞至肝窦(10-14)。脂多糖的炎症刺激会促进
引言尽管原位肝移植(OLT)是终末期肝脏疾病和某些肝脏恶性肿瘤患者的首选治疗方法,但供体器官短缺仍然是全球健康问题。尽管使用了来自已故供体的次优或“边缘”肝脏的使用,包括老年人死亡后的捐赠,以及肝脂肪变性大于30%,但由于质量较差而丢弃了20%以上的肝脏移植物(1)。此外,边缘肝移植物特别容易受到缺血/再灌注损伤(IRI),这是一种先天免疫驱动的局部炎症反应,这会构成移植物和患者的生存,并使OLT结局恶化(1,2)。因此,除了手术技术,免疫抑制药物方案以及重症监护援助外,供体器官保存对于改善临床结果和扩大可用于救生的供体器官池至关重要。尽管肝脏保存技术最近进行了改进,包括低温氧化灌注,过冷保存和正常热机灌注(NMP)(3-6)(3-6),静态冷藏(SCS)仍然是金标准,因为其简单性和成本效益(7)。实际上,在早期临床试验中,NMP和SCS肝脏保存之间的非抗恒骨胆道狭窄和移植物/患者存活的发生率没有显着差异(6),NMP可以增加90,000美元的$ 90,000,以增加单个OLT程序(8,9)。然而,由于有必要减少冷应力造成的细胞损伤(2、7),因此有必要采用新的减少冷保留型肝细胞损伤的方法。冷器官保存过程中肝窦内皮细胞(LSEC)的损伤代表导致肝IRI的INICAIL关键因素,确定移植物微循环不良,血小板激活,持久性
血管生成模仿(VM)被定义为通过遗传管制的癌细胞形成微血管通道,并且通常与高肿瘤级和癌症治疗耐药性相关。这种微循环系统独立于内皮细胞,为肿瘤提供氧气和养分,并部分促进转移。vm,并证明与降低的总体癌症患者生存率相关。因此,旨在抑制VM的策略可以改善癌症患者治疗。在这项研究中,在Matrigel生长时,在ES-2卵巢癌和MDA-MB-231 TNBC衍生的细胞形成的体外3D毛细管样结构中检测到Tortilin(stort1)受体。sort1基因沉默或针对其细胞外结构域的抗体抑制了毛细管样结构的形成。在体外,VM也与基因表达增加的基因表达相关,金属蛋白酶9(MMP-9)和癌症干细胞标记CD133的基因表达也相关。体内ES -2异种移植模型显示PAS + /CD31- VM结构(sort1和cd133均为染色阳性)。th1904,一种由sort1内部化的阿霉素肽结合物,在低NM浓度下显着降低了体外VM。相比之下,VM不受未缀合的阿霉素或多克西尔(脂质体竭曲蛋白)的影响,而不是M m浓度。th1902是多西他赛肽缀合物,在PM浓度下更有效地在体外VM改变了。这些新发现还表明两个肽 - 药物结合物,总的来说,第一次是1)Sort1本身在ES-2和MDA-MB-231 VM中发挥关键作用的当前数据证据,而在这些癌细胞模型中,2)VM可以受到肽 - drug conjugates Th1902/th1902/th1904的极度抑制。