摘要 — 循环平面正交场放大器 (RPCFA) 由密歇根大学设计、制造和测试。RPCFA 由多个射频源驱动,频率范围为 2.40 至 3.05 GHz,功率为 1 至 800 kW。脉冲电压由带陶瓷绝缘体的密歇根电子长束加速器 (MELBA-C) 输送到阴极,该加速器配置为提供 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1.0- μs。RPCFA 表现出零驱动稳定性和 15% 的带宽。在设计频率为 3 GHz、功率低于 150 kW 的情况下,微波信号的放大率观察到平均增益为 7.87 dB,变化性较高,σ = 2.74 dB。过滤该数据集以仅包含具有相同电压和电流分布的镜头,可获得 6.6 ± 1.6 dB 的增益。当注入的微波功率超过 150 kW 时,平均增益增加到 8.71 dB,变化性降低到 σ = 0.63 dB。峰值输出功率接近 6 MW,RF 击穿限制了设备的最大输出功率。
摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
抽象的功率横梁是通过指令电磁梁在自由空间跨空间的有效的点对点传递。本文以简单的术语清楚地阐明了功率光束的基本原理,并提出了一种基准测试方法,用于改善功率光束系统和技术的比较评估。在过去60年中,在微波和毫米波(MMWave)实验演示中追踪全球进展的深入历史概述,表明了过去5年活动的显着增长。此外,对接收微波功率光束的可扩展Rectenna阵列的进度进行了综述,显示了新研究的足够成熟度,以启动该技术的坚固化,生产力和系统整合方面。对包括频谱管理和安全在内的监管问题的审查表明,需要其他技术解决方案和国际协调。Breaking results reported in this paper include 1) data from the first in-orbit flight test of a solar-to-RF “sandwich module”, 2) the construction of multiple US in-orbit demonstrations, planned for 2023 launch, that will demonstrate key technologies for space-based solar power, and 3) a 100-kW mmWave power beaming transmitter demonstrating inherent human life safety.
量子传感器、量子信息电路、超导量子比特等领域的最新发展以及更广泛的天文探测和现代通信都依赖于微波光子的精确探测。然而,用于可靠和灵敏地表征固态量子电路(特别是超低功率和光子微波电路)的计量工具严重缺乏。不仅需要确定微波功率,还需要精确和准确地确定单光子特性(包括时间和相位)以及多光子特性(例如重合和纠缠)。目前最先进的低温放大器在高噪声温度方面不足,全球正在探索新型放大器以在灵敏度的量子极限下运行。参数放大器是目前已知的唯一实现微波信号量子极限灵敏度的方法。然而,实现足够大且足够平坦的带宽(例如从约 1 GHz 到 10 GHz)仍然是一项具有挑战性的任务。在具有三波混频的行波放大器中,目前的情况是可以改善的,但三波混频只有在具有非中心对称非线性的介质中才有可能。设计具有大且可控的非中心对称非线性的非线性介质(量子超材料)的可能性是量子光学的一个重要目标,它将实现参数增益、压缩和纠缠光子对的产生,为它们在量子信息处理和通信(QIPC)中的应用铺平道路。这种量子超材料可以借助约瑟夫森技术进行设计,并且可以同时实现具有三波混频的 JTWPA 和微波领域量子光学电路的优异特性。
在过去的几十年中,人们一直在积极讨论“非热”微波辅助微生物灭活机制。这项工作介绍了一种新颖的非侵入式声学测量方法,测量家用微波炉腔体磁控管的工作频率为 fo = 2.45 ± 0.05 GHz(λ o ~ 12.2 cm),并在时间域(0 至 2 分钟)内进行调制。测量结果揭示了腔体磁控管阴极灯丝冷启动预热周期和脉冲宽度调制周期(开启时间、关闭时间和基准周期,其中开启时间减去基准时间 = 占空比)。波形信息用于重建历史微波“非热”均质微生物灭活实验:其中自来水用于模拟微生物悬浮液;冰、碎冰和冰浆混合物用作冷却介质。实验使用文字、图表和照片进行描述。确定了影响悬浮液时间相关温度曲线的四个关键实验参数。首先,当所选工艺时间 > 时间基准时,应为每一秒的微波照射使用腔体磁控管连续波额定功率。其次,由于外部碎冰和冰浆浴的热吸收率不同,它们会产生不同的冷却曲线。此外,外部浴可能会屏蔽悬浮液,从而延缓时间相关的加热曲线。第三,由于周围没有冰块,内部冷却系统要求悬浮液直接暴露在微波照射下。第四,四个独立的水假负载隔离并控制悬浮液的热传递(传导),从而将一部分微波功率从悬浮液中转移出去。使用能量相空间投影将 800 W 时 0.03 至 0.1 kJ ⋅ m −1 的“非热”能量密度与报道的 1050 ± 50 W 时 0.5 至 5 kJ ⋅ m −1 的热微波辅助微生物灭活能量密度进行比较。
该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振是由于Zeeman拆分对材料的宏观磁化而导致自旋进液磁矩相互作用的影响。核心在铁磁共振时达到负渗透性。由于负渗透性,铁素体将磁化点抵消到施加的直流电场上给出的铁氧体芯的一端。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。简介:一种有趣的科学现象,但尚未理解的是磁性。磁性材料用于许多重要的技术,从大规模发电,存储,传输电动机和发电机的高性能磁铁到纳米级上的磁性信息,包括使用SpinTronics概念的存储,逻辑和传感器设备。物质的磁性继续引起科学的好奇心和想象力。电子的自旋是磁性的基本组成部分,铁磁,铁磁和抗磁磁性材料的多样性以及磁磁性和磁磁材料的多样性是由附近电子旋转的材料中附近电子旋转的不同耦合产生的。磁性材料的特征,行为和效用受材料内部竞争相互作用引起的显微镜旋转构型的影响。外源磁,电场和光场以及光本身都会影响或修改磁化本身。这为将来的超湿,超快速和低功率微电子系统的发展打开了大门。即将到来的技术时代(IoT)时代将受到技术,经济,环境和社会的这些成就的影响[1]。
向俄罗斯运送共同高优先级清单物项华盛顿特区——今天,作为和解协议的一部分,美国商务部工业和安全局 (BIS) 对总部位于加利福尼亚州埃尔塞贡多的射频和微波功率解决方案工程和制造公司 Integra Technologies, Inc.(“Integra”)处以 3,300,000 美元的民事罚款。该罚款与 Integra 向俄罗斯运送晶体管和相关产品有关,这些产品可用于航空电子设备或雷达系统。Integra 向俄罗斯运送了大量货物,其中有几批货物是在美国、欧盟、日本和英国将此类产品指定为共同高优先级清单 (CHPL) 物项之后运送的。CHPL 物项是俄罗斯专门寻求为其国防工业基地采购的物项,用于支持其全面入侵乌克兰所使用的武器计划。 2023 年 2 月至 2023 年 10 月期间,Integra 向俄罗斯最终用户销售了价值约 667 万美元的晶体管及相关产品,包括 CHPL 物品。所有这些销售均未获得 BIS 的必要许可或其他授权。Integra 自愿向 BIS 披露了该行为,并配合 BIS 出口执法办公室的调查。这种自愿披露 (VSD) 导致罚款大幅减少。由于 Integra 的支付能力有限,BIS 还同意暂停 150 万美元的罚款。出口执法助理部长 Matthew S. Axelrod 表示:“自普京全面入侵乌克兰以来,我们一直非常清楚企业在出口共同高优先级清单物品方面需要保持警惕。”“今天的处罚是 BIS 根据 VSD 减轻的,这应该向其他 CHPL 出口商发出强烈信号,表明违反这些关键物品的管制将导致的后果。” “在俄罗斯进一步入侵乌克兰后,美国对俄罗斯实施了广泛的新出口管制。随着这些管制措施不断发展,对于任何决定继续向俄罗斯出口的美国公司来说,密切跟踪和实施管制措施的更新至关重要。Integra 未能做到这一点。但值得注意的是,Integra 在整个调查过程中的披露和广泛合作导致罚款大幅减少,这是我们 VSD 政策的主要激励因素,”出口执法办公室主任 John Sonderman 表示。
瓦片是一种多层结构,两面都是光伏 (PV) 材料,PV 层下方有天线,还有一层承载 CMOS 集成电路,用于路由参考信号和定时,以控制天线的相位和直流到微波功率转换。瓦片具有将太阳能转换为微波能量并将该能量辐射到所需位置所需的所有功能。瓦片被制成长度从几米到 60 米不等的条带,然后将它们铺设到碳纤维结构中,该结构连接到展开装置上,而展开装置又连接到航天器上。碳纤维结构使条带可以折叠并卷入展开装置中,以便发射存放。我们目前的太空飞行器设计质量约为 430 公斤。发电站由许多太空飞行器组成,这些太空飞行器要么通过吊杆机械连接,要么自主编队飞行。SSPP 的中期目标之一是在太空中展示我们概念 [1] 的核心技术。通过验证技术在其设计运行环境中的性能以及展示系统内的功能接口正常运行,太空演示可以降低风险。我们设想进行一系列复杂程度不断增加的演示,以进一步增强对技术的设计和可扩展性的信心。我们的第一个这样的演示是空间太阳能演示一号(SSPD-1)。我们注意到最近有一个由 P. Jaffe [3] 领导的专门针对空间太阳能的太空演示。Jaffe 的“三明治”模块托管在美国空军 X-37B 太空飞机上,并在低地球轨道上运行了一年多。我们在 SSDP-1 开始时制定了几条基本规则。首先,有效载荷由三个独立的实验组成,以便可以单独测试每种技术。通过解耦如果我们要建造和飞行一个缩放的集成演示器时发生的依赖关系,我们可以验证核心技术的性能,而不会因相互依赖而产生潜在的混淆因素。其次,我们按照 NASA C/D 级任务标准 [4] 执行 SSPD-1 的开发、组装、集成和测试。我们的任务由技术目标(C 级)驱动,但我们的风险承受能力比其他级别(D 级)更高,复杂性相对较低(D 级),并且有程序约束(D 级)。作为 C/D 级任务运行,我们不必遵守任务更关键的有效载荷开发项目中的许多标准和 TOR,从而加快开发速度。我们仍然保持严格的测试
I.引言m绘制的喷嘴推进器是正在开发的几种技术之一,旨在满足对低功率,高特定冲动的空间推进的需求。这些推进器通过通过扩展的直流磁场加热和加速等离子体来运行[1]。主要存储在血浆电子中的热能随着血浆通过磁场扩展而转换为离子动能。通常,这些设备使用射频或微波功率来加热等离子体,从而实现无电极操作。此推进器体系结构具有多种属性,使其非常适合小型卫星推进。例如,缺乏电极可以进行反应性推进剂和潜在的低侵蚀操作。同样,该设计仅需要一个电源。与以前的设计相比,使用电子回旋共振(ECR)作为磁性喷嘴推进器中的加热源的最新发展已产生有希望的结果。推力支架测量结果显示,在30瓦的1000秒内,特定的冲动在10%以上的推力官方官方[2]。这是低功率直升机的发布数据和电感耦合等离子体设计的几倍[3]。话虽如此,尽管ECR推进器的性能是有希望的,但对于任务申请,水平仍然没有竞争力。为了充分证明这项技术的潜力,迫切需要确定技术途径以更快地提高其成熟度。此启用等离子属性,即高电子温度。为此,以前的参数实验表明,对于推进器几何形状的小变化可能对整体性能具有很大的影响,这表明可能进行进一步的性能优化[4]。改善ECR性能的另一种方法是操纵微波输入到推进器的功率调节。例如,将具有不同频率的多个波在注入推进器之前混合在一起,或以脉冲方式调节振幅。波浪混合方法的基础假设是改变功率条件可能会改变ECR共振区的位置和大小。另一方面,使用脉冲功率使推进器可以摆脱源于0D功率平衡的正常限制。两种类型的功率调节已经成功地在用于重离子生产的ECR离子来源上实施[5]。但是,尚未对推进器进行探索。采用这种优化方法的主要挑战之一是问题的维度。没有完整的基础物理模型,优化需要无梯度的方法。只有两个免费参数,探索设计空间可能需要数十个或数百个样本点。因此,对于可以更有效地测试每个设计点的工具来说,需求显而易见。这项工作的目标是探索通过传统的单频率操作,两频加热和脉冲操作来优化低功率ECR推进器的策略。本文以以下方式组织。sec。sec。我们使用基于替代物的优化算法来指导每种情况下参数空间的探索。我们首先激励我们的研究。ii通过引入推进器的全局模型,我们用来确定密钥优化参数。iii我们描述了实验设置,包括推进器,真空设施和所使用的诊断。第四节详细详细介绍了优化过程和