I.引言m绘制的喷嘴推进器是正在开发的几种技术之一,旨在满足对低功率,高特定冲动的空间推进的需求。这些推进器通过通过扩展的直流磁场加热和加速等离子体来运行[1]。主要存储在血浆电子中的热能随着血浆通过磁场扩展而转换为离子动能。通常,这些设备使用射频或微波功率来加热等离子体,从而实现无电极操作。此推进器体系结构具有多种属性,使其非常适合小型卫星推进。例如,缺乏电极可以进行反应性推进剂和潜在的低侵蚀操作。同样,该设计仅需要一个电源。与以前的设计相比,使用电子回旋共振(ECR)作为磁性喷嘴推进器中的加热源的最新发展已产生有希望的结果。推力支架测量结果显示,在30瓦的1000秒内,特定的冲动在10%以上的推力官方官方[2]。这是低功率直升机的发布数据和电感耦合等离子体设计的几倍[3]。话虽如此,尽管ECR推进器的性能是有希望的,但对于任务申请,水平仍然没有竞争力。为了充分证明这项技术的潜力,迫切需要确定技术途径以更快地提高其成熟度。此启用等离子属性,即高电子温度。为此,以前的参数实验表明,对于推进器几何形状的小变化可能对整体性能具有很大的影响,这表明可能进行进一步的性能优化[4]。改善ECR性能的另一种方法是操纵微波输入到推进器的功率调节。例如,将具有不同频率的多个波在注入推进器之前混合在一起,或以脉冲方式调节振幅。波浪混合方法的基础假设是改变功率条件可能会改变ECR共振区的位置和大小。另一方面,使用脉冲功率使推进器可以摆脱源于0D功率平衡的正常限制。两种类型的功率调节已经成功地在用于重离子生产的ECR离子来源上实施[5]。但是,尚未对推进器进行探索。采用这种优化方法的主要挑战之一是问题的维度。没有完整的基础物理模型,优化需要无梯度的方法。只有两个免费参数,探索设计空间可能需要数十个或数百个样本点。因此,对于可以更有效地测试每个设计点的工具来说,需求显而易见。这项工作的目标是探索通过传统的单频率操作,两频加热和脉冲操作来优化低功率ECR推进器的策略。本文以以下方式组织。sec。sec。我们使用基于替代物的优化算法来指导每种情况下参数空间的探索。我们首先激励我们的研究。ii通过引入推进器的全局模型,我们用来确定密钥优化参数。iii我们描述了实验设置,包括推进器,真空设施和所使用的诊断。第四节详细详细介绍了优化过程和
主要关键词