本文考虑了一种离散时间调度方法,用于实现连续时间直流微电网系统的功率平衡。高阶动力学和电阻网络分别用于对集中式微电网系统的电力存储单元和直流总线进行建模。采用图上的 PH(Port-Hamiltonian)公式来明确描述微电网拓扑。这种建模方法使我们能够推导出一个离散时间模型,该模型可以保持物理系统的功率和能量平衡。接下来,使用所提出的控制模型制定了受约束的经济 MPC(模型预测控制),以有效管理微电网运行。网络建模方法和基于优化的控制的系统组合使我们能够生成适当的功率分布。最后,通过在不同场景下使用真实数值数据对特定直流微电网电梯系统进行仿真和比较结果,验证了所提出方法的优势。
摘要:随着电力系统规模的不断扩大,分布式发电和能量管理向有源配电网发展趋势日益明显。然而分布式可再生能源的不稳定性给电力系统运行带来了复杂性,电力系统的有源对称性和平衡性显得越来越重要。本文针对分布式资源和低频减载的特点,提出了一种基于储能功率快速调整的协调运行与控制策略。分析各类可控资源的特点,探究储能的快速响应能力,根据支撑时间对储能类型进行分类,最终通过储能系统的功率分配与调节控制实现决策。此外,针对有源支撑不足的场景,提出了低频减载和分级系统的综合控制策略。通过多能源系统案例验证了所提模型和方法的可行性。
摘要:随着分布式发电机 (DG) 的快速发展和可再生能源 (RES) 电力渗透水平的提高,在发电功率和需电功率存在不确定性和多变性 (即功率波动) 的情况下,任何电力系统的安全持续运行都是一个关键问题。引入可控发电机和电力存储设备对于缓解这一问题是必不可少的。为满足电力供需平衡要求,在功率平衡约束下进行潮流分配至关重要。然而,由于发电机和负载的物理功率限制约束、电力存储设备的容量限制和连接安排,很难实现功率平衡。本文提出了一种系统特性来描述发电机、负载、存储设备及其之间连接的关系。应满足所提出的特性系统以通过保持存储设备的 SOC 边界来保证给定潮流系统的安全运行。也就是说,要实现可行的电力流分配,需要考虑许多问题,例如必须如何确定发电机和负载的功率限制(即最大和最小功率水平)、存储设备的容量有多大以及必须考虑的连接的物理布置。本文还展示了一个优化问题,包括优化存储容量、使用可再生和不可再生能源发电机以及与电力需求相匹配。本文讨论了几种演示场景,以应用和验证我们提出的系统特性。
摘要:本文提出了一种考虑储能系统(ESS),个体发电单元特征以及全年的每小时功率平衡约束的方法来制定生成扩展计划。生成扩展计划(GEP)是一个复杂的优化问题。要获得成本最低,可接受的系统可靠性和令人满意的CO 2排放的现实计划,需要配制一个复杂的多期混合整数线性编程(MILP)模型,并与单个单位特征以及每小时的功率平衡约束一起求解并解决。此问题需要巨大的计算工作,因为在一个计算中有数千个可能的情况,其中数百万变量。但是,在本文中,提出了简化的过程,而不是直接找到此类MILP的全球最佳解决方案,将其分解为多个LP子问题,这更容易解决。在每个子问题中,都可以包括与可再生能源产生的文件相关的约束,ESS的电荷分离模式以及系统的可靠性。根据泰国的权力开发计划对拟议过程进行了测试。获得的解决方案几乎与实际计划的解决方案相同,但计算工作较少。还讨论了不确定性以及ESS对GEP的影响,例如系统可靠性,电力成本和CO 2排放。