免疫疗法目前是肺癌最有希望的临床治疗方法,不仅彻底改变了二线治疗,而且现在也批准了第一线治疗。但是,其临床效率不高,并非所有患者都受益。因此,找到扩展抗PD-1/PD-L1的免疫疗法的最佳组合策略现在是一个热门研究主题。常规使用化学治疗药物和靶向药物不可避免地会导致耐药性,有毒副作用和其他问题。然而,最近的研究表明,通过调整药物的剂量并阻止取决于获得的耐药性的突变机制的激活,可以减少毒性副作用,激活免疫细胞并重塑肺癌的免疫微环境。在这里,我们讨论了不同化学治疗药物和靶向药物对免疫微环境的影响。我们探讨了调整给药顺序和时间的影响以及此类反应的机制,并展示合并免疫疗法的有效性和可靠性如何提供改善的治疗结果。
癌症是一种毁灭性的疾病,与正常细胞相比,癌细胞的能量和物质利用能力强大。这部分是由于能够根据环境变化来调整其新陈代谢的能力。在癌细胞的寿命中,在癌变,进度或转移中观察到巨大的能量和物质需求。但是,涉及的机制是有争议的,尚不清楚。了解癌细胞如何比正常细胞捕获更多的能量和物质,对于开发下一代癌症治疗,包括寻找新的药物靶标和设计药物。最近通过与正常细胞和细胞质中分级的使者池相连的自组装蛋白纳米管的癌细胞线粒体劫持的最新报道引起了极大的兴趣。考虑到这种角度考虑了物理和化学区域中广泛讨论的纳米域,因此对生物纳米限制(BNC)进行了合理讨论。We discuss various aspects such as the tendency of solid cancer cells to prioritize and utilize energy and substances at hypoxia while creating a lesser nutrition-supplying environment extra- and intra-cellularly, the paradox that chimeric antigen receptor T (CAR-T) therapies are effective in hematological cancers but less effective in solid tumors, and the fact that CAR-T adjuvant therapy with chemotherapy has synergetic enhancement效果。此外,我们得出的结论是,迫切需要开发新型抑制剂以解散生物纳米浓缩。
线粒体调节在肿瘤微环境 (TME) 中的癌症免疫中起着至关重要的作用。在过滤过程中,免疫细胞(包括 T 细胞、自然杀伤 (NK) 细胞和巨噬细胞)会经历线粒体代谢重编程,以在 TME 的恶劣条件下生存并增强其抗肿瘤活性。另一方面,免疫抑制细胞(如髓系抑制细胞 (MDSC)、调节性 T 细胞 (Treg)、肥大细胞和肿瘤相关巨噬细胞 (TAM))也依赖线粒体调节来维持其功能。此外,癌细胞的线粒体调节有助于免疫逃避,甚至劫持免疫细胞的线粒体以增强其功能。最近的研究表明,针对线粒体可以协同减缓癌症进展,尤其是与传统癌症疗法和免疫检查点抑制剂相结合时。目前,许多针对线粒体的药物正在临床试验中,并有可能增强免疫疗法的疗效。这篇小型综述强调了线粒体调节在癌症免疫中的关键作用,并列出了有可能增强癌症免疫疗法疗效的针对线粒体的药物。
癌症免疫疗法在治疗各种恶性肿瘤方面取得了巨大的进步。成功免疫疗法的最大障碍是癌细胞的免疫抑制肿瘤微环境(TME)和低免疫原性。要成功进行免疫疗法,必须将“冷” TME转换为“热”免疫刺激状态,以激活残留的宿主免疫反应。为此,应损坏TME中的免疫抑制平衡,应诱导免疫原性癌细胞死亡以适当刺激杀死肿瘤的免疫细胞。光动力疗法(PDT)是诱导癌细胞免疫原性死亡(ICD)并破坏免疫限制性肿瘤组织的有效方法。PDT会触发链反应,该链反应将使TME“热”并具有ICD诱导的肿瘤抗原呈现给免疫细胞。原则上,PDT和免疫疗法的战略组合将协同作用,以增强许多棘手的肿瘤的治疗结果。采用纳米载体的新技术是开发出来的,以提供光敏剂和免疫治疗剂对TME有效。新一代纳米医学已开发用于PDT免疫疗法,这将加速临床应用。
肺癌(LC)是全球健康问题,也是与癌症相关死亡率的主要原因之一。根据国际癌症研究机构(IARC)发布的全球癌症统计报告,肺癌的发病率和死亡率仍然很高,占2020年全球癌症死亡的18%(1-3)。 手术,放疗和化疗一直是近年来肺癌治疗的护理标准。 但是,靶向疗法和免疫疗法的临床使用一直在增加。 重点已转移到检测与肿瘤发育相关的驱动基因,例如EGFR,KRAS和MET,并识别这些基因调节的细胞生长或细胞凋亡的信号传导途径。 针对这些基因的靶向治疗显着提高了肺癌患者的中间存活率。 免疫疗法现在是NSCLC中晚期或转移性突变阴性驱动基因的患者的第一线治疗。 不幸的是,肿瘤复发通常会导致对最初有效的药物的抗性(4)。 随着新兴的肿瘤微环境(TME)的加热概念,越来越多的证据表明,TME促进了癌症的进展,并可能介导治疗性耐药性。 与肺癌相关的疗法和研究正在逐渐从仅关注肿瘤细胞本身到肿瘤微环境研究的更广泛的领域。 癌症的发展与肿瘤微环境的生理状态密切相关,该状态可以调节肿瘤细胞繁殖并增强对治疗的抵抗力。根据国际癌症研究机构(IARC)发布的全球癌症统计报告,肺癌的发病率和死亡率仍然很高,占2020年全球癌症死亡的18%(1-3)。手术,放疗和化疗一直是近年来肺癌治疗的护理标准。但是,靶向疗法和免疫疗法的临床使用一直在增加。重点已转移到检测与肿瘤发育相关的驱动基因,例如EGFR,KRAS和MET,并识别这些基因调节的细胞生长或细胞凋亡的信号传导途径。针对这些基因的靶向治疗显着提高了肺癌患者的中间存活率。免疫疗法现在是NSCLC中晚期或转移性突变阴性驱动基因的患者的第一线治疗。不幸的是,肿瘤复发通常会导致对最初有效的药物的抗性(4)。随着新兴的肿瘤微环境(TME)的加热概念,越来越多的证据表明,TME促进了癌症的进展,并可能介导治疗性耐药性。与肺癌相关的疗法和研究正在逐渐从仅关注肿瘤细胞本身到肿瘤微环境研究的更广泛的领域。癌症的发展与肿瘤微环境的生理状态密切相关,该状态可以调节肿瘤细胞繁殖并增强对治疗的抵抗力。TME是一个层次结构化的生态系统,其中包含各种细胞类型,从肿瘤相关的巨噬细胞(TAM),免疫细胞和与癌症相关的纤维细胞(CAFS)(CAFS),以及血液对比,神经血管,神经血管,细胞外基质,以及相关的构成构成(5 - 5 - 5 - 5 - 5 - 5 - 5-7)。特别是,免疫细胞在TME中起重要作用,其中包括促进肿瘤生长,并在宿主免疫监测和消除肿瘤癌细胞中起关键作用(8)。根据肿瘤类别,癌细胞的内在特征,肿瘤阶段和个别患者的特征,TME变化的细胞组成和功能状态。这些细胞的作用可以是关于肿瘤的相互作用,并在宿主免疫监视和消除肿瘤癌细胞中起关键作用(9)。共同调节区域免疫效应,最终调节
值得注意的是,他们在肿瘤中发现了两种类型的免疫抑制性髓样细胞:一种与死组织区域相关,另一种与抗网疗疗法有关。在被给予地塞米松的患者中,这些细胞的免疫抑制作用明显高于未患者,并且随着剂量增加的效果,其影响更强。
今年冬天的疫苗接种水平和严重的共同水平的水平足够低,以至于CDC研究小组的数据中没有足够的患者来可靠地确定受疫苗受保护的儿童,可以防止非老年人的住院,或者阻止任何人患有严重的相互企业并发症或死亡。
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
Strounal“ Lopa-lopes 1,3 1,3 Lida Malagos 1,Anupriya St. Curtain 1,Ann Liu 1,Joseph W.,Elad Horwitz 1,Azfar Neyaz 1,Eric Tai 1,Eric Tai 1,Neelima Magnus 1,Neelima Magnus 1,Kevin D. 1 , Jackson P. Fatherree 1 , Leah J. Damon 1 , Kristina Xega 1 , Melissa Choz 1 , Francis 1 , Adam Langenbucher 1 , Vishal Tapar 1,3 , Robert Morris Daniel A. Haber 1:5,8, Carlos Fernandez-Del-Del 1:2 , Cristina R. Ferrone 1:2 , Martin J. Aryee. 1,3,9,* , & & David Ting 1:4,*
1 Guy's Cancer Center,Guy's and St Thomas'NHS基金会信托基金会,英国伦敦SE1 9RT; Christian.linares@nhs.net(C.A.L。 ); Sola.adeleke@nhs.net(S.A.)2 Kent肿瘤学中心,Maidstone和Tunbridge Wells NHS NHS Trust,Hermitage Lane,Maidstone,Meadstone,Kent ME16 ME16 9QQ,英国; anjana.varghese@nhs.net 3医学肿瘤学部,梅德韦NHS基金会信托基金会,吉林汉姆ME7 ME7 5NY,英国; aruni.ghose@nhs.net(A.G.); elisabet.sanchez@nhs.net(E.S. ); matin.sheriff@nhs.net(M.S.) 4 Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK 5 Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK 6 Immuno-Oncology Clinical Network, UK 7 Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK; s.shinde@smd22.qmul.ac.uk 8生命科学与医学学院,癌症与药学学院,伦敦国王学院,伦敦国王学院,伦敦WC2R 2LS,英国9号,99 cyrus.chargari@aphp.fr 10医学肿瘤学,法国维勒维夫94805的医学肿瘤学系; elie.rassy@hotmail.com 11 Kent and Medway医学院,肯特大学,坎特伯雷CT2 7LX,UK 12 AELIA组织,第9 km Thessaloniki -Thermi,57001 Thessaloniki,Greece,Greece *通信 *通信:stergiosssiosboussios@gmail.com或stergios.boil.com或stergios.bous.bous.bous@s.net或stergios.boussios@kcl.ac.uk或s.boussios@kent.ac.uk†这些作者同样为这项工作做出了贡献。1 Guy's Cancer Center,Guy's and St Thomas'NHS基金会信托基金会,英国伦敦SE1 9RT; Christian.linares@nhs.net(C.A.L。); Sola.adeleke@nhs.net(S.A.)2 Kent肿瘤学中心,Maidstone和Tunbridge Wells NHS NHS Trust,Hermitage Lane,Maidstone,Meadstone,Kent ME16 ME16 9QQ,英国; anjana.varghese@nhs.net 3医学肿瘤学部,梅德韦NHS基金会信托基金会,吉林汉姆ME7 ME7 5NY,英国; aruni.ghose@nhs.net(A.G.); elisabet.sanchez@nhs.net(E.S.); matin.sheriff@nhs.net(M.S.)4 Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK 5 Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK 6 Immuno-Oncology Clinical Network, UK 7 Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK; s.shinde@smd22.qmul.ac.uk 8生命科学与医学学院,癌症与药学学院,伦敦国王学院,伦敦国王学院,伦敦WC2R 2LS,英国9号,99 cyrus.chargari@aphp.fr 10医学肿瘤学,法国维勒维夫94805的医学肿瘤学系; elie.rassy@hotmail.com 11 Kent and Medway医学院,肯特大学,坎特伯雷CT2 7LX,UK 12 AELIA组织,第9 km Thessaloniki -Thermi,57001 Thessaloniki,Greece,Greece *通信 *通信:stergiosssiosboussios@gmail.com或stergios.boil.com或stergios.bous.bous.bous@s.net或stergios.boussios@kcl.ac.uk或s.boussios@kent.ac.uk†这些作者同样为这项工作做出了贡献。