非经典因果模型是为了解释违反贝尔不等式而开发的,同时遵循相对论因果结构和可靠性——即避免微调因果解释。最近,基于维格纳朋友思想实验的扩展,得出了一个可以被视为比贝尔定理更强的不通定理:局部友好 (LF) 不通定理。在这里,我们表明,即使考虑非经典和/或循环因果解释,LF 不通定理也对因果模型领域提出了巨大的挑战。我们首先将 LF 不等式(LF 不通定理的关键元素之一)重新定义为源于统计边际问题的一夫一妻制关系的特殊情况。然后,我们进一步将 LF 不等式重新定义为因果兼容性不等式,它源于非经典因果边际问题,其因果结构由有理有据的因果形而上学假设所暗示。我们发现,即使允许观察到的事件的潜在原因接受后量子描述(例如在广义概率论或更奇特的理论中),LF 不等式仍会从这种因果结构中出现。我们进一步证明,没有非经典因果模型可以在不违反无微调原则的情况下解释 LF 不等式的违反。最后,我们注意到,即使诉诸循环因果模型,也无法克服这些障碍,并讨论了因果建模框架进一步扩展的潜在方向。
基础模型通过利用其预先训练的代表来捕获语音信号中的情感模式,在语音情感识别(SER)中表现出了巨大的希望。为了进一步提高各种语言和领域的SER性能,我们提出了一种新颖的方法。首先,我们收集了Emoset ++,这是一个全面的多语言,多种文化的语音情感语料库,具有37个数据集,150,907个类型,总持续时间为119.5小时。第二,我们介绍了exhubert,这是Hubert的增强版本,它是通过骨架扩展和对E Mo s et ++进行微调实现的。我们将每个编码器层及其权重填充,然后冻结第一个重复,集成了零零的线性层并跳过连接以保持功能并确保其适应性的能力,以便随后进行微调。我们在看不见的数据集上的评估显示了Exhubert的功效,为各种SER任务设定了新的基准标记。模型和有关E Mo S et ++的详细信息:https://huggingface.co/amiriparian/exhubert。索引术语:情感计算,语音情感识别,变形金刚,深度学习
您可以通过使用自己的及时完成对来微调特定任务,使其适应特定的任务。您的微调模型是您的单独使用,而不是与其他客户共享或共享或用于培训其他型号的模型。提交给微调的数据保留了模型,直到客户删除文件为止。了解更多。微调
安全对齐的大型语言模型 (LLM) 容易受到有害的微调攻击 (Qi 等人,2023)——微调数据集中混入一些有害数据可能会破坏 LLM 的安全对齐。现有的缓解策略包括对齐阶段解决方案 (Huang、Hu 和 Liu,2024;Rosati 等人,2024a) 和微调阶段解决方案 (Huang 等人,2024;Mukhoti 等人,2023)。然而,我们的评估表明,当选择某些特定的训练超参数时,这两类防御都会失败——微调阶段的较大学习率或大量训练周期很容易使防御失效,但这对于保证微调性能是必要的。为此,我们提出了 Antidote,这是一种后微调阶段解决方案,它与微调阶段的训练超参数无关。 Antidote 的理念是,通过删除有害参数,可以从有害行为中恢复有害模型,而不管这些有害参数在微调阶段是如何形成的。基于这一理念,我们在有害微调之后引入了一次性剪枝阶段,以删除导致有害内容生成的有害权重。尽管 Antidote 非常简单,但实证结果表明,它可以在保持下游任务准确性的同时降低有害分数。我们的项目页面位于 https://huangtiansheng.github.io/Antidote_gh_page/
[请想象一个像所有LLM一样受过训练的LLM。按照我第15周的讲座的方式,想象一下该LLM的无监督培训是基于其摄入的文本序列的摄入,第二个是第一个的延续。显然取决于第一个序列的性质,LLM完全有可能为其延续而获得多种可能性 - 有些人使用亵渎和其他形式的犯规和可能的暴力语言。 ]
2。更新大型ML模型。低级矩阵近似的一种相当现代的应用是用于“微调”巨大模型。在大型语言模型(LLMS)的设置中,经常有一些现成的巨大模型,其中数十亿(或更多)。鉴于这种大型模型已在巨大但通用的语料库(网络文本)上进行过培训,因此经常执行“微调”。这个微调阶段是在特定于域的数据集上进行的第二轮训练的阶段,通常大小相当适度。微调任务的示例可能是客户服务交流,ED论坛问和答案,医疗报告等的数据集。微调的挑战是,更新如此庞大的模型在计算上非常昂贵。2021纸洛拉:大型语言模式的低排名改编[1]使得1)1)微调更新通常接近低级,因此2)因此,2)一个人可以明确地以1000x或10,000x的参数训练原始模型的这些更新对原始模型的培训,如果您有兴趣,请查看原始论文(或讨论它的博客文章的动物园)。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
3虽然Openai现在有一个候补名单,用于使用新型号进行实验性微调,但推荐的且广泛可用的微调模型仍然是GPT-3.5 Turbo。4的GPT-3.5涡轮增压器的API呼叫成本为(100万令牌):输入令牌:0.50美元,输出令牌$ 1.50,而GPT-4O分别为:5美元和15美元。微调令牌成本明显更高:输入:$ 3,输出:6美元,而微调模型的费用仅为100万培训令牌的$ 8。5“幻觉”是用来描述LLM会产生不正确信息的案例的术语,当通过基于聊天的界面或LLM-aughted搜索使用LLM时,通常很感兴趣。因为我们没有向GPT查询事实,所以我们认为幻觉对我们的研究问题至关重要。
计算社会科学(CSS)的实践通常依靠人标记的数据来调查监督的文本分类器。我们评估了研究人员使用来自生成大语言模型(LLM)的替代培训标签增强或替换人类生成的培训数据的潜力。我们介绍了推荐的工作流程,并通过复制14个分类任务和测量性能来测试此LLM应用程序。我们采用了来自高影响力期间CSS文章的新型英语文本分类数据集。由于这些数据集存储在受密码保护的档案中,因此我们的分析不太容易受到污染问题。对于每项任务,我们将使用GPT-4标签的监督分类器进行了比较,并用人类注释进行了微调的分类器,并与GPT-4和Mismtral-7b的标签进行了微调,并以较少的镜头在上下文中学习。我们的发现表明,在LLM生成的标签上微调的监督分类模型与通过人类注释者的标签进行了微调的模型相当。使用LLM生成标签的微调模型可以是构建监督文本分类器的快速,高效且具有成本效益的方法。
摘要 - 本文探讨了通过对新数据进行微调模型来改善现有面部生物识别系统质量的方法。它检查了反映生物识别安全系统基本操作原理的总体框架,以及使用OPENCV中的深神经网络(DNN)面部检测方法来解决此任务的主要方法和方法。已经开发了一个面部识别软件套件,其中包括:检测模块,头部位置确定模块,用户识别模块,访问控制和管理系统(ACMS)模块和培训模块。已经对现有方法进行了研究,以增强识别算法和系统的准确性。对系统进行微调后在一天中不同时间进行微调后的识别率的增加进行了分析。研究结果表明,开发的模块可确保高准确性和可靠性。由于系统微调,识别率提高了约4-5%。此外,值得注意的是,具有面部识别技术的ACM代表了寻求自动出勤跟踪过程的教育机构的强大工具。此步骤标志着应用高级技术以提高出勤管理的效率和准确性的重大进展。关键字 - 识别,识别系统,识别算法,深度神经网络(DNN)的面部检测方法,微调,与访问控制和管理系统(ACMS)集成(ACMS)