摘要:脑瘤是指脑内异常细胞的生长,其中一些细胞可能导致癌症。检测脑瘤的常用方法是磁共振成像 (MRI) 扫描。从 MRI 图像中可以识别出有关脑内异常组织生长的信息。在各种研究论文中,脑瘤的检测都是通过应用机器学习和深度学习算法来完成的。当将这些算法应用于 MRI 图像时,可以非常快速地预测脑瘤,更高的准确度有助于为患者提供治疗。这些预测还有助于放射科医生快速做出决策。在所提出的工作中,应用自定义卷积神经网络 (CNN) 来检测脑瘤的存在,并分析其性能。高效网络是 CNN 模型之一,具有高精度和低计算量。因此,本研究建议使用高效网络架构对神经胶质瘤、脑膜瘤和垂体脑瘤的类型进行分类。高效网络有八个类别级别,从 EfficientNet-B0 到 EfficientNet-B7。本研究在 EfficientNet-B3 中获得了最佳结果,准确率达到 97.34%。索引词 - 图像分类、脑肿瘤、EfficientNet。
主要关键词