微重力研究的目的是研究通常被地球引力所隐藏的现象。因此,研究人员试图在地球上无法重现的微重力条件下获取数据。实验涵盖广泛的主题:基础物理学、物理科学、生命科学、材料科学、宇宙科学、技术实验、空间设备测试和载人航天任务准备。有几种方式可以进入微重力环境。从落塔、探空火箭和自动化太空舱到国际空间站,这些设备提供了开展科学实验的各种设施(见表 1)。在五种进入失重状态的方式中,只有抛物线飞行允许科学家在短时间内(通常从实验提案到实验执行大约需要一年)自行操作实验(最常用的是实验室型仪器),而无需将实验自动化、小型化或委托给宇航员等操作员。此外,在抛物线飞行过程中,研究人员可以多次重复实验并修改参数。飞机抛物线飞行
重力与地球不同。在太空中,重力使月球保持在绕地球运行的轨道上。由于国际空间站 (ISS) 距离地球表面较近,其轨道位于地球与月球总距离的约 2% 处。因此,地球的引力场在距离地面 120 至 360 英里的典型轨道高度仍然相当强。然而,由于自由落体的情况,国际空间站中存在微重力环境。您可能在不知情的情况下经历过类似的情况。例如,由于垂直下降而产生短暂自由落体的游乐园游乐设施,或过山车的连绵起伏的山丘。太空科学家和工程师通过使用特殊手柄和 Velcro 带为微重力环境提供便利。宇航员在工作、睡觉和上厕所时会利用这些不同的便利设施。此外,考虑到长时间处于微重力环境中会影响肌肉强度和骨骼密度,宇航员必须在专门设计的机器上定期锻炼。
摘要:这项研究涉及四种地球物理方法的应用和分析(电阻率断层扫描,微重力,磁性,M.A.S.W.)用于在受控场地条件下检测隧道。Resistivity断层扫描为目标和近表面地质形成提供了令人满意的信息。偶极偶极子和杆偶极是检测到的空隙的最合适的阵列,尤其是当后来的前向前和逆转测量值时。耗时且费力的微重力方法适用于隧道的描述。先验信息对于微重力数据的反转是必需的。从表面波的多通道分析中得出的伪部分显示了两个地质层,并成像了浅平滑的异质性,归因于地下目标。但是,由于较低的横向分辨率,目标限制并未很好地定义。由于目标和宿主岩之间的磁化敏感性增加,梯度磁方法可以准确地描述隧道。当目标是当代人制造的结构时,通常会满足这种情况。
§ 合作伙伴:ZARM(应用空间技术和微重力中心)和 DLR(德国航空航天中心) § 成立时间:2014 年 § 旨在为教育或研究机构提供在德国不来梅落塔进行一系列微重力实验的机会。 § 落塔实验系列包括一周内进行的 5 次落下或弹射发射。每个实验系列都伴随着活动前一周进行的现场实验集成。 § 该计划已成功进行了 7 项实验。 § 目前开放申请,截止日期为 2023 年 1 月 22 日。
本技术备忘录 (TM) 首先回顾了与太空焊接相关的现有文献,重点关注微重力下的凝固、热量和质量传递以及流体流动。本调查研究了微重力下焊接对材料系统的影响。检查了之前设计和测试过的各种太空焊接设备,以确定它们的能力和缺点,重点关注它们各自的焊接实验结果。讨论了在焊接操作期间保护轨道国际空间站 (ISS) 和机组人员的安全措施。最后,通过关注多家公司与 NASA 合作开发的 AM 和在轨焊接的当前方法来检查最新技术。
太空环境非常敌对,在这种情况下,人类很容易受到伤害。宇航员在空间旅程中遇到各种应力因素,包括辐射,微重力,发射过程中有力加速,改变磁场和配置。这些压力源显着影响人体体内平衡,从而导致生理病理学适应,骨密度丧失,肌肉萎缩,心血管衰减,肝功能的改变,前庭适应性和免疫系统失调。这些改变可能会影响药物药代动力学和药效学,从而影响给宇航员施用的药物的效率和安全性。由于在微重力条件下进行的对药物进行的研究数量有限,因此在空间中评估这些药物的有效性和稳定性的挑战。当前工作的目的是通过与该问题的七名专家进行的单独访谈的收集来比较有关PK/PD变化的最新知识以及可能影响它们的因素的最新知识。被选为“专家”,即特定学科的代表,他们在太空药理学,生理学或生物学方面具有知识和经验。因此,我们的小组包括宇航员,太空外科医生和科学家,旨在弥合文献中缺乏实验数据。所有访谈均使用在线会议软件进行远程进行。在每次访谈探讨了空间生理学和药理学的各种方面,包括在ISS上使用药物和存储;在当前的研究差距和未来太空探险方面出现了值得注意的考虑。没有受访者可以就微重力条件下的药物PK/PD的潜在变化提供全面的概述。此外,船上带来的任何药物(无论是作为宇航员的医疗工具包的一部分还是在ISS药房中存储)都被破坏,从而抑制了分析长期暴露于微重力和辐射而导致的任何退化产物的可能性。根据这些结果,使用药物的使用而不了解它们在微重力条件下如何真正吸收,分布,代谢和排泄的药物与药物有效性构成风险。
苏尼塔·威廉姆斯(Sunita Williams),国际空间站的指挥官,矛头植物栖息地-07,一项关于在微重力中生长的长叶莴苣的研究。该实验探讨了水分配如何影响空间的植物生长,从而解决了诸如营养递送和根源发育之类的挑战。这项研究对于未来的月球和火星任务至关重要,为可持续太空耕作铺平了道路。资深宇航员正在领导着一项突破性的农业实验,试图在微重力中生长植物。空间站的指挥官威廉姆斯(Williams)正在不同的水条件下培养“彻底的” romaine生菜。
SciSpacE 利用各种研究平台(包括地面模拟、微重力和低地球轨道设施)准备和开展多学科科学活动,并正在扩展到月球和火星目的地
在六分钟的微重力时间段内,西蒙娜进行了一项实验,研究液态合金在微重力下的特殊反应,以增强汽车发动机轴承的先进材料,而 GECO 则记录了植物中钙与微重力的相互作用,以扩展我们对植物栽培的了解,例如确保太空中的食物来源。最后,凤凰 2 号更深入地研究了多个燃料液滴自燃中的液滴相互作用,这将有助于更好地了解液体喷雾燃烧,这种燃烧用于工业炉、锅炉、燃气轮机、柴油机、火花点火和火箭发动机。
