原则上,进入 HF 通道的单端输入信号通过输入端的反相门被分解成差分信号。下面的电容电阻网络将信号分解成瞬态脉冲,然后由比较器将其转换为 CMOS 电平。比较器输入端的瞬态脉冲可以高于或低于共模电压 VREF,具体取决于输入位是从 0 变为 1 还是从 1 变为 0。比较器阈值根据预期的位转换进行调整。HF 通道比较器输出端的决策逻辑 (DCL) 测量信号瞬态之间的持续时间。如果两个连续瞬态之间的持续时间超过某个时间限制(例如低频信号的情况),DCL 会强制输出多路复用器从高频切换到低频通道。
• 工业过程控制 • 250 kHz 采样率 • 数据采集系统 • 标准 ± 10 V 输入范围 • 数字信号处理 • 45 kHz 输入时的 73 dB SINAD • 医疗设备 • ± 0.45 LSB 最大 INL • 仪器仪表 • ± 0.45 LSB 最大 DNL • 12 位无丢失代码 • ± 1 LSB 双极零误差 ADS8504 是一款完整的 12 位采样 A/D • ± 0.4 PPM/ ° C 双极零误差漂移转换器,采用最先进的 CMOS 结构。它包含一个完整的 12 位、基于电容器的 SAR A/D,带有 S/H、参考、时钟、用于微处理器使用的接口和 3 态输出驱动器。和 16 位 ADS8505 ADS8504 的采样率为 250 kHz • 在整个温度范围内使用内部或外部参考速率。精密 • 全并行数据输出电阻提供行业标准 ± 10 V 输入 • 250 KSPS 范围内典型功耗为 70 mW,而创新设计允许从单个 +5 V 电源运行,功耗低于 100 mW。
• 工业过程控制 • 250 kHz 采样率 • 数据采集系统 • 标准 ± 10 V 输入范围 • 数字信号处理 • 45 kHz 输入时的 73 dB SINAD • 医疗设备 • ± 0.45 LSB 最大 INL • 仪器仪表 • ± 0.45 LSB 最大 DNL • 12 位无丢失代码 • ± 1 LSB 双极零误差 ADS8504 是一款完整的 12 位采样 A/D 转换器,采用最先进的 CMOS 结构。它包含一个完整的 12 位、基于电容器的 SAR A/D,带有 S/H、参考、时钟、用于微处理器使用的接口和 3 态输出驱动器。和 16 位 ADS8505 ADS8504 的额定采样率为 250 kHz,覆盖整个温度范围。精密电阻器提供 250 KSPS 范围内的行业标准 ± 10 V 输入,而创新设计允许使用单个 +5 V 电源运行,功耗低于 100 mW。
通常,绝缘击穿发生在材料内部、材料表面或两者兼有。表面故障可能由闪络或局部小火花导致绝缘表面逐渐退化引起。此类火花是绝缘层上导电污染物表面膜破裂的结果。由此导致的漏电流中断会在不连续处产生过电压,并产生电火花。这些火花通常会导致绝缘材料碳化,并导致不同电位点之间出现碳迹。此过程称为跟踪。
1 简介 1–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . 2.1 订购信息 2–1 . . . . . . . . . . . . . . . . . 2.2 端子功能 2–1 . . . . . . . . . . . . . . . . . . . 2.3 定义和术语 2–2 . . . . . . . ................................................................................................................................................................................................................................................. 3 功能描述 3–1 ........................................................................................................................................................................................................................................................................................ 3.1 工作频率 3–1 ........................................................................................................................................................................................................................................................................................ 3.1 工作频率 3–1 ........................................................................................................................................................................................................................................................................................................ 3.1.1 工作频率3.2 内部架构 3–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 抗混叠滤波器 3–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Sigma-Delta ADC 3–1 . . . . . . . . . . . . . . . . . . . . . . . . ...
2 • 数字输出:SPI 兼容接口 • 可编程分辨率:9 至 12 位 + 符号 TMP122 是一款 SPI 兼容温度传感器,采用 SOT23-6 封装。仅需一个上拉电阻即可实现完整功能,TMP122 温度传感器能够测量 -55°C 至 125°C 温度范围内的 2°C 精度以内的温度,最高工作温度为 150°C。可编程分辨率、可编程设定点和关断功能为任何应用提供了多功能性。低电源电流和 2.7 V 至 5.5 V 的电源范围使 TMP122 成为低功耗应用的理想选择。 • 电源温度监控 TMP122 非常适合在各种通信、计算机、消费、环境、工业和仪器仪表应用中进行扩展热测量。 • 手机 • 电池管理 • 办公设备 • 恒温器控制 • 环境监测和 HVAC • 机电设备温度
传输使能输入。内部下拉。TXENABLE 有两个用途。在所有模式下,TXENABLE 必须为高电平,才能启用 DAC 的 DATA。当 TXENABLE 为低电平时,数字逻辑部分被强制为全 0,并且任何输入数据都被忽略。在交错数据模式下,TXENABLE 可用于将数据同步到通道 A 和 B。第一个 A 通道样本应与 TXENABLE 的上升沿对齐。
安全限制约束是绝对最大额定值表中指定的绝对最大结温。安装在应用硬件中的设备的功耗和结到空气热阻决定了结温。热特性表中假定的结到空气热阻是安装在 JESD51-3、引线表面贴装封装低有效热导率测试板中的设备的结到空气热阻,是保守的。功率是建议的最大输入电压乘以电流。结温是环境温度加上功率乘以结到空气热阻。
在 TI 的 29 年职业生涯中,Robert Baumann 发现 10B 与低能宇宙中子的反应是数字电子产品的主要可靠性风险,并制定了缓解方案,将产品故障率降低了近十倍。从 1993 年到 1998 年,他参与了 TI 在日本的 Mihomura Fab 和 Tsukuba 研发中心的晶体管和辐射效应可靠性以及高级故障分析。回到达拉斯后,他领导了先进技术可靠性小组的辐射效应项目。他共同领导了 SIA 的专家小组,该小组成功地与美国政府进行了谈判,修改了对先进商业技术构成严重出口限制风险的 ITAR 出口管制法。Baumann 是 JEDEC(JESD89、89A)行业标准的主要作者之一,该标准针对陆地环境辐射特性,并因此荣获 JEDEC 主席奖。2012 年,他转入高可靠性产品组,专注于改进辐射效应的特性、建模和报告。Baumann 当选为 TI 和 IEEE 院士。他合著并发表了 90 多篇论文和演讲、两本书的章节,并拥有 15 项美国专利。Baumann 于 2018 年从 TI 退休。
在 TI 的 29 年职业生涯中,Robert Baumann 发现 10B 与低能宇宙中子的反应是数字电子产品的主要可靠性风险,并制定了缓解方案,将产品故障率降低了近十倍。从 1993 年到 1998 年,他参与了 TI 在日本的 Mihomura Fab 和 Tsukuba 研发中心的晶体管和辐射效应可靠性以及高级故障分析。回到达拉斯后,他领导了先进技术可靠性小组的辐射效应项目。他共同领导了 SIA 的专家小组,该小组成功地与美国政府进行了谈判,修改了对先进商业技术构成严重出口限制风险的 ITAR 出口管制法。Baumann 是 JEDEC(JESD89、89A)行业标准的主要作者之一,该标准针对陆地环境辐射特性,并因此荣获 JEDEC 主席奖。2012 年,他转入高可靠性产品组,专注于改进辐射效应的特性、建模和报告。Baumann 当选为 TI 和 IEEE 院士。他合著并发表了 90 多篇论文和演讲、两本书的章节,并拥有 15 项美国专利。Baumann 于 2018 年从 TI 退休。