摘要目的:调查医生和医学生之间的互判和内部人士在音频记录中的心脏声音分类,以及预测与参考分类一致的因素。设计:内部和互确定研究。主题:来自挪威和荷兰的17名GPS和八名心脏病专家,来自挪威的八名医学学生。主要结果指标:与参考分类的协议和KAPPA系数的比例和KAPPA系数的比例。结果:所有评估者的内部杂音一致性比例平均为83%,中位KAPPA为0.64(范围K¼0.09 - 0.86),分别为GPS,心脏病学家和医学生的0.65、0.69和0.61。结果:所有杂音的一致性比例为81%,所有评估者的KAPPA中位数为0.67(范围0.29 - 0.90),GPS,CAR-diologists和医学生的比例分别为0.65、0.69和0.51。结果:独特的杂音,超过五年的临床实践和心脏病专业与该协议最密切相关,ORS为2.41(95%CI 1.63 - 3.58),2.19(1.58 - 3.04)和2.53(1.46 - 4.41)。结论:我们观察到了公平但可变的一致性,并参考了心脏杂音,医师的经验和专业以及杂音强度是与一致性最密切相关的因素。
摘要:成年人的心脏无法在组织损伤后恢复完全心脏功能,这使心脏再生成为当前的临床未满足需求。有许多临床程序旨在减少受伤后缺血损伤;但是,尚无刺激成年心肌细胞恢复和增殖的可能性。多能干细胞技术和3D培养系统的出现彻底改变了领域。特别是3D培养系统通过获得更准确的人类微环境条件来在体外建模疾病和/或药物相互作用,从而增强了精度医学。在这项研究中,我们涵盖了基于干细胞的心脏再生医学的当前进展和局限性。特别是,我们讨论了基于干细胞的技术和正在进行的临床试验的临床实施和局限性。然后,我们解决了3D培养系统的出现,以产生心脏类细胞器,以更好地代表人类心脏的微环境,用于疾病建模和遗传筛查。最后,我们深入研究了从心脏器官中与心脏再生有关的见解,并进一步讨论了对临床翻译的影响。
我还感谢达卡Diit讲师Mizanur Rahman为我们提供了成功完成该项目的设施。我还对达卡(Dhaka)的DIIT讲师,讲师为我们提供了成功完成该项目的设施。我也表示感谢Mushfiqur Rahman,Dhaka Diit讲师,为我们提供了成功完成该项目的设施。
摘要:对于患有先天性心脏缺陷(CHD)的儿童,可能需要进行体外生活支持。这项回顾性的单中心研究旨在调查体外膜氧合(ECMO)儿童的结果,重点是各种危险因素。在88例患者中,有36例(41%)具有单腹膜心脏缺陷,而52(59%)的患者患有双心脏缺陷。总共有25个(28%)幸存,第一个组中有7(8%),后者有18个(20%)。p值为0.19,表明存活率没有显着差异。患有双室心脏的儿童的ECMO持续时间较短,但在重症监护室中停留更长的时间。单个心室的儿童(赔率[OR] 1.57,95%的置信间隔[CI] 0.67–3.7)的儿童ECMO并发症的总体率更高。在两组中,出血都是最常见的并发症。单个心室患者(22%比9.6%),第二次ECMO运行的发生更为常见。ECMO对于包括单腹膜患者在内的先天性心脏缺陷的儿童有效。出血仍然是与较差的结果相关的严重并发症。需要在30天内进行第二次ECMO运行的患者的存活率较低。
朱利安·科尼格 1,2 |比尔吉特·阿布勒 3 |英格丽德·阿加茨 4,5,6 |托比约恩·阿克施泰特 7,8 |奥勒·安德烈亚斯森 4,9 |米娅·安东尼 10 |卡尔·尤尔根·贝尔 11 |卡佳·伯茨 12 |丽贝卡·C·布朗 13 |罗穆亚尔德·布伦纳 14 |卢卡嘉年华 15 |雨果·D·克里奇利 16 |凯瑟琳·R·卡伦 17 | Geus 18 的 Eco JC |十字架的费利伯特 11 |伊莎贝尔·吉奥贝克 19 |马克·D·费格 3 |哈坎·菲舍尔 20 |赫塔弗洛尔 21 |迈克尔·盖布勒 22,23 |彼得·J·吉安罗斯 24 | Melita J. Giummarra 25.26 |史蒂文·G·格林宁 27 |西蒙·根德尔曼 28 |詹姆斯·AJ·希瑟斯 29 |萨宾·J·赫珀茨 12 | Mandy X. 至 30 |塞巴斯蒂安·延奇克 31,32 |迈克尔·凯斯 1.33 |托拜厄斯·考夫曼 4.9 | Bonnie Klimes-Dougan 34 |斯特凡·科尔施 31.35 |玛琳·克劳奇 12 |丹尼斯·库姆拉尔 22.23 | Femke Lamers 30 |李泰浩 36 |马茨·亚历山大 7.8 |凤林10 |马丁洛策 37 |埃琳娜·马科瓦茨 38.39 |马泰奥·曼奇尼 40.41 |福尔克·曼克 12 | Kristoffer NT 价格 20,42 |斯蒂芬·B·马努克 24 |玛拉·马瑟 43 |弗朗西斯·米滕 44 |闵正元 45 |布莱恩·穆勒 17 |薇拉·穆恩奇 13 |弗劳克·尼斯 21.46 |林雅 45 |古斯塔夫·尼尔松内 8,20 |丹妮拉·奥尔多涅斯·阿库纳 31 |贝尔热·奥斯内斯 35.47 |克里斯蒂娜·奥塔维亚尼 39.48 |布伦达 WJH 彭尼克斯 30 |艾莉森·庞齐奥 45 |戈文达·R·普德尔 49 |詹尼斯·雷内尔特 22 |平忍10 |榊道子 50.51 |安迪舒曼 11 |林索伦森 35 |卡尔斯滕·施佩希特 35.52 |乔安娜·施特劳布 13 |桑德拉·塔姆 8,20,53 |米歇尔泰国 17 |朱利安·F·塞耶 54 |本杰明·乌巴尼 55 |丹尼斯·范德米 18 |劳拉·S·范维尔岑 56.57.58 |卡洛斯·文图拉-博特 59 |阿诺·维尔林格 22,23 |大卫·沃森 60 |魏鲁清 61 |朱莉娅·温特 59 |梅琳达·韦斯特伦德·施莱纳 34 |拉尔斯·T·韦斯特莱 4,9,62 |马蒂亚斯·威玛 59.63 |托拜厄斯·温克尔曼 21 |吴国荣 61 |刘贤珠 45 |丹尼尔·S·金塔纳 4.9
(被认为是大学)被钦奈(Rajiv Gandhi Salai)的Naac Jeppiaar Nagar获得认可的“ A”等级-600 119
4 md.devendran@gmail.com 摘要:心脏病仍然是全球死亡的主要原因之一。早期预测和诊断对于预防严重后果和改善患者的生活质量至关重要。该项目专注于使用机器学习技术开发强大的心脏病预测系统。通过分析由各种患者属性(例如年龄、性别、血压、胆固醇水平和其他医疗参数)组成的综合数据集,该系统旨在预测患者患心脏病的可能性。该项目采用各种机器学习算法,如逻辑回归、决策树、支持向量机 (SVM) 和随机森林来对数据进行分类并提供准确的预测。使用准确度、精确度、召回率和 F1 分数等指标来评估系统的性能,确保它能够在实际应用中提供可靠的结果。此外,还应用特征选择技术来识别导致心脏病的最重要因素,从而提高模型的可解释性。提出的解决方案旨在通过提供早期警报和建议来帮助医疗保健专业人员,最终促进及时干预。该项目促进了人工智能在医疗保健领域日益重要的作用,并展示了机器学习在增强心脏病预防诊断能力方面的潜力。
