4 md.devendran@gmail.com 摘要:心脏病仍然是全球死亡的主要原因之一。早期预测和诊断对于预防严重后果和改善患者的生活质量至关重要。该项目专注于使用机器学习技术开发强大的心脏病预测系统。通过分析由各种患者属性(例如年龄、性别、血压、胆固醇水平和其他医疗参数)组成的综合数据集,该系统旨在预测患者患心脏病的可能性。该项目采用各种机器学习算法,如逻辑回归、决策树、支持向量机 (SVM) 和随机森林来对数据进行分类并提供准确的预测。使用准确度、精确度、召回率和 F1 分数等指标来评估系统的性能,确保它能够在实际应用中提供可靠的结果。此外,还应用特征选择技术来识别导致心脏病的最重要因素,从而提高模型的可解释性。提出的解决方案旨在通过提供早期警报和建议来帮助医疗保健专业人员,最终促进及时干预。该项目促进了人工智能在医疗保健领域日益重要的作用,并展示了机器学习在增强心脏病预防诊断能力方面的潜力。
主要关键词