Loading...
机构名称:
¥ 1.0

本研究提出了一种机器学习技术,可以提高对年降雨总量的预测。预测特定区域的降水量和降水时间被称为降雨预测。全球社会非常关注降雨预报的准确性。人们知道这是每年洪水和其他自然灾害的根源。许多行业都可能受到恶劣天气的影响,包括农业、建筑、发电和旅游业。降水预报是最具挑战性和不确定性的工作之一,因为它对人类社会有着深远的影响。减少不必要的痛苦和经济损失的唯一方法是及时和准确的预测。本文利用澳大利亚主要城市一天的历史气象数据,描述了一系列实验,这些实验建立了能够使用尖端机器学习技术预测明天降雨可能性的模型。这项比较研究将详细研究输入、方法和预处理策略。使用各种衡量算法理解天气数据和预测降水可能性的能力的指标,结果揭示了这些机器学习算法的表现如何。事实证明,机器学习在预测何时下雨方面非常有用,这是目前最基本的需求,目前,很难确定何时会下雨。在预测降水量的过程中,我们采用了大量方法,例如决策树算法、线性回归、支持向量回归、随机森林回归器和随机森林分类器。在农业方面,有效降雨是决定作物生长速度的关键因素。使用机器学习预测降雨量可以改善水资源规划、农业生产和用水预测。

使用各种机器学习预测未来降雨量...

使用各种机器学习预测未来降雨量...PDF文件第1页

使用各种机器学习预测未来降雨量...PDF文件第2页

使用各种机器学习预测未来降雨量...PDF文件第3页

使用各种机器学习预测未来降雨量...PDF文件第4页

使用各种机器学习预测未来降雨量...PDF文件第5页

相关文件推荐

2022 年
¥1.0