这与“初始条件假设”相一致,该假设认为准备活动设定了动态系统的初始状态,然后演变为产生由初始状态部分定义的时空活动(28)。支持这一观点的是,在视觉和自愿试验中,刺激前和提示前活动状态分别在每次试验的基础上预测了运动过程中的后续群体活动(图 4C)。也许因此,我们 10
对于许多获得的慢性神经系统疾病,康复仍然是最有前途的治疗方法。在过去的几十年中,随着对神经可塑性的不断发展,研究人员研究了各种治疗方式,这些方法挖掘了这些机制,以改善患者的结果。虽然已经采用了外围和中央刺激技术,但直到最近才有研究人员将这些技术的组合应用于改善运动结果,减少治疗持续时间或两者兼而有之。在这个特殊主题中,我们编辑了使用各种非侵入性刺激技术来理解和促进不同神经系统疾病的运动恢复的文章,包括中风,脊髓损伤,创伤性脑损伤,帕金森氏病和多发性硬化症。非侵入性周围刺激技术,包括功能性电刺激,感觉刺激,电肌肉刺激和经皮电刺激,是一些经典的神经调节型治疗师用于神经疗法的一些经典神经调节剂(1-4)。尽管这些技术已经显示出希望,但文献表明结果是高度可变的(5)。因此,迫在眉睫的需要开发能够始终产生良好结果的治疗方式。在这种尝试中,正在积极研究将周围刺激与中央刺激结合的康复干预措施。Stefan等人表明,可以通过体感传入和内在运动皮层电路的连接活性在人类运动皮层中诱发皮质输出电路的持久变化(6)。Liu等人提出,可能会组合中央干预和周围干预以形成闭环信息反馈,以增强大脑可塑性和神经途径的重塑,从而可能改善性能或结果(7)。在这方面使用的常见无创脑和脊髓刺激技术包括但不限于经颅磁刺激(TMS),经颅直流电流刺激(TDC),经皮脊柱
在过去的几十年中,系统神经科学为人类认知和行为对神经元网络的形成的依赖提供了证据,这些神经元网络暂时将分布的大脑区域响应于外部刺激和 /或任务需求(Gonzalez-Castillo和Bandettini,2018年,2018年),同样相当相关的网络(在2011年),并在2011年的corbect和corbert and corbect and conters和其他工作。最近,已经提供了证据证明内部状态(即交付外部输入时的大脑的潜在特性或活动)的想法,影响了大脑如何处理任务(Bradley等,2022)。看来,响应和任务性能是持续的潜在大脑状态和刺激处理之间非线性相互作用的结果(Huang等,2017),在时间和空间中不同状态之间的浮雕决定了与行为相关的大脑可变响应(Zagha和McCormicmick,2014)。在此框架中的一个相关示例是(Taghia et al。,2018)的工作,在sec- ond/seaceend暂时尺度上使用功能性磁共振成像(fMRI),提出了一种计算方法,以识别大型潜在大脑状态,并提出deter-
BrainWAVE:一种跨物种无创刺激脑节律的灵活方法 缩写标题 BrainWAVE:无创刺激脑节律 作者及所属机构 Matthew K. Attokaren †1 、Nuri Jeong †1,2 、Lou Blanpain 1,2 、Abigail L. Paulson 1 、Kristie M. Garza 1,2 、Ben Borron 1 、Michael Walelign 1 、Jon Willie 3 、Annabelle C. Singer* 1,2 1. 佐治亚理工学院和埃默里大学库尔特生物医学工程系,美国佐治亚州亚特兰大 2. 埃默里大学神经科学研究生课程,生物和生物医学科学研究生部,美国佐治亚州亚特兰大 30322 3. 华盛顿大学神经外科、生物医学工程、精神病学、神经科学和神经病学,密苏里州圣路易斯 63110 †同等贡献 作者贡献 MKA、LB、ALP、KMG、BB、MW 和 ACS 设计研究、开发方法并贡献未发表的试剂/分析工具;MKA、ALP、LB、KMG、BB、NJ、JW 收集并分析数据;MKA、NJ、ACS 构思并撰写手稿;所有作者阅读并编辑手稿;JW 和 ACS 指导研究。 * 通讯地址为 asinger@gatech.edu 图表数量:5
皮质皮质配对 - 促进性刺激(CCPA)是一种高级双位点经颅磁刺激技术,可利用Hebbian原理诱导功能网络中的塑性变化并调节皮层大脑区域之间的相互作用。本综述总结了CCPAS研究基于视觉感知的网络动力学研究的不断增长。研究揭示了视觉系统中皮质形成的连接中的功能解离,其中独特的分层有组织的电路塑造了视觉处理的各个方面,包括运动感知,情感识别和元认知判断。将CCPA与EEG/MEG等神经影像学技术集成的前瞻性应用有望进行微调干预措施,并更深入地了解视觉系统网络动态和功能架构,并在神经和精神病学条件下进行潜在的临床应用。
术中定义功能皮质(传统上由神经外科医生执行以保护患者功能)现在可以帮助植入目标电极以恢复功能。脑机接口 (BMI) 有可能恢复瘫痪患者的上肢运动控制,但需要准确放置记录和刺激电极才能实现对假肢的功能控制。除了从记录阵列进行运动解码外,在与手指和指尖感觉相关的皮质区域精确放置刺激电极还可以提供感官反馈,从而改善对假肢的灵巧控制。在这项研究中,作者展示了使用一种新颖的术中在线功能映射 (OFM) 技术与高密度皮层脑电图来定位人类初级体感皮质中的手指表征。结合传统的术前和术中定位方法,该技术能够准确植入刺激微电极,这通过植入后对手指和指尖感觉的皮质内刺激得到证实。这项工作证明了术中 OFM 的实用性,并将为未来人类闭环 BMI 的研究提供参考。
追踪和预测伤害性输入的时间结构对于促进生存至关重要,因为适当和立即的反应对于避免实际或潜在的身体伤害必不可少。不同时间结构的伤害性刺激所引起的神经活动已有描述,但将伤害性刺激转化为疼痛感知的神经过程尚未完全阐明。为了研究这个问题,我们记录了 48 名健康参与者的脑电信号,这些参与者接受了 3 种不同持续时间和 2 种不同强度的热伤害性刺激。我们观察到疼痛感知和几种大脑反应受到刺激持续时间和强度的调节。至关重要的是,我们确定了 2 种与疼痛感知出现相关的持续大脑反应:来自岛叶和前扣带皮质的低频成分 (LFC,< 1 Hz) 和来自感觉运动皮质的 α 波段事件相关去同步 (α-ERD,8–13 Hz)。这两种持续的大脑反应是高度耦合的,α 振荡幅度随 LFC 相位波动。此外,刺激持续时间转化为疼痛感知的过程由 α -ERD 和 LFC 连续介导。本研究揭示了伤害性刺激引起的大脑反应如何反映伤害性信息转化为疼痛感知过程中发生的复杂过程。
会议ID:879 7099 2041(❖从11:45 pm开始,Zoom会议ID将与照料者协会分开举行。)❖❖12:30 pm -13 pm -13:00pm邀请1(Onsite)(OnSite)Ishikawa Hidey School of Medical of Medical of Neurolology of Neurolology of Neurolology of Neurolology of Neurology of Neurology of Neurology of Neurolology of Neurolology of Neurolology of Neurolology of Neurolology'' barrier function on mouse behavior - AKAP12 - Focusing on behavioral analysis of knockout mice" Effects of Altered Blood-Brain Barrier Function on Mouse Behavior: Focusing on Behavioral Analysis of AKAP12 Knockout Mice 30 minutes ❖ 1:00 PM - 1:30 PM Invited Lecture 2 (Onsite) Professor Shirakawa Hisashi Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences,京都大学分子药理学系,京都大学药学研究生院“病理生理学分析和白质损伤的治疗性干预 - 考虑到与生活方式相关疾病的历史,导致痴呆症的病理生理学分析和治疗性刺激性刺激性刺激性刺激性刺激性的症状效果〜导致痴呆症〜break❖1:45pm -14:45 pm(每次20分钟)年轻会议1。1.教授Ono Akira教授,系统整合工程系,科学技术研究生院,Keio University keio University of Miledhoton Laser Fructutation,Multiphoton Laser Faceration 2。
视觉诱发电位(VEP)对周期性刺激通常用于大脑计算机界面中的有利特性,例如高目标识别精度,较小的训练时间和较低的目标干扰。传统的周期性刺激会导致由于连续和高对比度刺激而导致主观的视觉疲劳。在这项研究中,我们将准周期和混乱的复杂刺激与常见的周期性刺激进行了比较,以与基于VEP的大脑计算机界面(BCIS)一起使用。规范相关分析(CCA)和相干方法用于评估三个刺激组的性能。通过视觉模拟量表(VAS)评估了由提出的刺激引起的主观疲劳。使用M2模板方法使用CCA,与Quasi-periodic(M = 78.1,SE = 2.6,P = 0.008)和周期性(M = 64.3,SE = 1.9,SE = 1.9,P = 0.0001)相比,混乱刺激的目标识别精度最高(M = 86.8,SE = 1.8)。对疲劳率的评估表明,与准周期性(p = 0.001)和周期性(p = 0.0001)刺激组相比,混乱刺激引起的疲劳较少。另外,与周期性刺激相比,准周期性刺激导致疲劳率较低(p = 0.011)。我们得出的结论是,与具有CCA的其他两个刺激组相比,混沌组的靶标识别结果更好。此外,与周期性和准周期性刺激相比,混乱的刺激导致主观视觉疲劳较少,并且可以适合设计新的舒适的基于VEP的BCIS。