报告中的命名 Advanced Materials FR70R 级材料是 Bluestar FR8700 U 系列中名为 Bluesil FR8775U 的原材料;因此,测试结果将参考 FR70R、FR8775 或 MF775,具体取决于测试的进行时间和测试委托人。这些都是相同的材料。可用报告:EN45545-2:2020 R1 – R7 HL1 – HL2 – HL3 要求集 R1 和 R7 测试机构 LAPI Laboratorio Prevenzione Incendi SpA 报告编号 1925.1IS0040/22 EN 45545-2:2020 材料和部件防火性能要求(要求集 R1、R7) 材料名称 BLUESIL FR 8775 E NAT 测试发起方 Elkem Silicones France – R&T Atrion NFX 70 – 100 气态流出物分析 测试机构 Warrington Fire 报告编号 WF 151185 NFX 70 – 100 气态流出物分析 材料名称 Rhodorsil MF775 CR 测试发起方 Rhodia Silicones BS 6853: 1999 附录 D,条款 D.8.3 辐条密度 测试机构 Warrington Fire报告编号 WF 151186 BS 6853: 1999 附录 D,条款 D.8.3 辐条密度 材料名称 Rhodorsil MF775 CR 测试发起人 Rhodia Silicones BS EN ISO 4589-3: 1996 通过氧指数测定燃烧行为 测试机构 Warrington Fire 报告编号 WF 151188 BS EN ISO 4589-3: 1996 通过氧指数测定燃烧行为(第 3 部分附件 A - 温度测试) 材料名称 Rhodorsil MF775 CR 测试发起人 Rhodia Silicones
在人工智能辅助决策中,人类决策者知道何时信任人工智能以及何时信任自己至关重要。然而,先前的研究仅基于表明人工智能正确性可能性 (CL) 的人工智能置信度来校准人类信任,而忽略了人类的 CL,从而阻碍了最佳团队决策。为了弥合这一差距,我们提出在任务实例级别基于双方的 CL 来促进人类适当的信任。我们首先通过近似人类的决策模型并计算他们在类似情况下的潜在表现来建模人类的 CL。我们通过两项初步研究证明了我们模型的可行性和有效性。然后,我们提出了三种 CL 利用策略来在人工智能辅助决策过程中显式/隐式地校准用户的信任。一项受试者间实验 (N=293) 的结果表明,与仅使用人工智能置信度相比,我们的 CL 利用策略可以促进人类对人工智能更合适的信任。我们进一步为更人性化的人工智能辅助决策提供了实际意义。
摘要 - 有机废物已成为城市地区的一个大环境问题。食物浪费和植物废物是来自家庭,校园环境和食品行业的有机废物的一部分。这种有机废物的占垃圾填埋场中处置的总废物的比例很高。有机废物还污染了环境,导致严重的温室气体排放。扔掉食物垃圾会产生甲烷气体,这对环境有害并导致全球变暖。为了避免食物浪费的甲烷气体和环境污染的大规模生产,非常重要的是,通过鼓励浪费回收利用,例如通过堆肥过程中的农业中使用诸如农业中的有机肥料之类的废物来最大程度地减少食物浪费。因此,有必要寻找可以通过SNI产生堆肥质量来加速堆肥过程的生物激活剂。本文介绍了可以加速堆肥速率的各种生物激活剂的使用的回顾。研究表明,已经使用了各种生物激活剂来源来堆肥食物浪费,例如水果,蔬菜,植物纤维和农业废物。需要进一步的研究来查看生物激活剂在堆肥过程中更好地组合。
为了实现碳中立性的目标并解决全球能源危机的研究主题,大量间歇性可再生能源(例如风力涡轮机和光伏发电机)已被广泛安装在现代电网中(Van Soest等,2021)。可再生能源生产的随机性质引起了显着的可靠性问题,并给各种决策者带来了重要的财务风险,并且在可再生能源设备中使用电力设备在可再生能源整合中也对电力系统控制和运营构成了主要挑战(Alashery等人,2019年)。为了减轻间歇性生产可再生能源引起的不确定性,有必要利用资源和方法来促进灵活性(例如电池存储和价格响应性需求),以探索批发和零售水平的新颖市场机制,并研究高级建模和优化技术(Jin等,2018)。智能网格中间歇性可再生能源资源的控制,操作和交易的主要挑战是电力传输,分配和消费过程中固有的不确定性和复杂性(Bevrani等,2010)。此外,鉴于电力行业放松管制的全球背景,间歇性可再生能源领域的决策者还需要考虑零售和批发市场的波动电价,以及其他战略参与者的随机行为。在这种情况下,有必要根据最先进的智能电网技术制定高级控制,运营和交易策略,以间歇性可再生能源资源。本研究主题报告了控制,操作和交易领域的最新进展,以智能网格中间歇性可再生能源资源来解决潜在的困难和挑战;与该领域相关的四十篇文章已发表。如图1所示,准确的预测和建模方法可以以
洪丹妮是厦门大学生命科学学院的博士生。林红丽是厦门大学生命科学学院的研究生。刘丽芳是厦门大学生命科学学院的研究生。舒木雅是中国科学院遗传与发育生物学研究所的博士后研究员。戴建武是中国科学院遗传与发育生物学研究所的教授。卢发龙是中国科学院遗传与发育生物学研究所的教授。佟梦莎是厦门大学生命科学学院的助理教授。黄嘉良是厦门大学生命科学学院的教授。收稿日期:2022 年 8 月 17 日。修订日期:2022 年 10 月 21 日。接受日期:2022 年 10 月 24 日 © 作者 2022。牛津大学出版社出版。保留所有权利。如需许可,请发送电子邮件至:journals.permissions@oup.com
图2。合成,表征和DBCO修饰脂质体的体外靶向效应。(a)DBCO修饰的脂质体合成DSPE-PEG 2000 -DBCO,DOPC和胆固醇的示意图。使用DSPE-PEG 2000合成未修饰的脂质体。(b)DBCO-LIPO的大小和Zeta电位。(c)DOX和R837混合物的HPLC痕迹或dox/r837的提取物的提取物。将检测波长设置为254 nm。(d)在(c)中〜6.5分钟时检测到的DBCO脂质的UV吸收光谱。(E)用AC 4 Mannaz或PBS预处理的4T1细胞的共聚焦图像48小时,然后与DID封闭的DBCO-LIPO孵育30分钟。比例尺:10μm。(f)用AC 4 Mannaz或PBS预处理的4T1细胞的平均CY5荧光强度48小时,然后与DID封闭的DBCO-LIPO(2 mg/ml)孵育30分钟。(g)用AC 4 Mannaz预处理的4T1细胞的平均CY5荧光强度,然后与不同浓度的DID封闭DBCO-LIPO孵育30分钟。所有数值数据均表示为平均值±SD(0.01 < *p≤0.05; **p≤0.01; ***p≤0.001)。
作者感谢:Anna Stratton 的杰出投入、研究协助和支持,她对本手册的编写起到了至关重要的作用; Annie Petsonk、Ruben Lubowski、Fred Krupp、Julia Fidler、Elizabeth Willmott、Lucas Joppa、Thomas Roetger、Kristin Qui、Oleg Lugovoy、Elena Schmidt、Christine Seifert、Jan Seven、Martin Lange、Mark Brownstein、Beth Trask、Suzi Kerr、Nat Keohane、John Schmitz、Martina Simpkins、Amy Malaki、Jan Mazurek、Nikki Roy、Christa Owens Michelet、Andrei Mungiu、Tim Johnson、Carlos Calvo Ambel、Pietro Caloprisco、James Beard、John Holler、Nikita Pavlenko、Arianna Baldo、Sylvie Banoun、Pierre Caussade、Claire Rais-Assa、Jonathan Gilad 和 Inmaculada Gómez Jiménez 的投入、领导、支持和/或启发;国际可持续航空联盟(ICSA)、联合国国际民航组织航空环境保护委员会秘书处以及国际民航组织成员国和观察员的成员帮助形成了本手册的思想,并为国际民航组织 CORSIA SAF 框架做出了不懈的努力,以促进在环境和社会诚信的基础上实现航空脱碳;感谢 Christa Ogata 和 Sommer Yesenofski 的文字编辑;感谢气候工作基金会、突破能源和 CLIMA 基金会(Medio Ambiente 实验室)对这项工作的慷慨支持。
人工智能 (AI) 显示出解决对人类和地球生存至关重要的环境可持续性问题的巨大潜力。然而,人工智能的开发和使用会导致间接排放,从而对环境造成不利影响。因此,信息系统 (IS) 领域的组织、研究人员和从业者必须了解人工智能对环境的积极和消极影响。本文通过对人工智能和可持续性交叉领域的文献进行理论回顾来确定当前的研究流,从而为这一主题做出了贡献。此外,本文采用了可供性理论作为理论视角,旨在确定可持续人工智能的可供性——该领域涵盖了绿色 IS 社区中的“可持续发展人工智能”和“人工智能可持续性”研究领域。确定的可供性将使研究人员和从业者能够设计和使用可持续人工智能系统。
1。li,Y.,Chan,C。T.&Mazur,E。基于DIRAC的电磁零索引地层。轻科学。应用。10,203(2021)。2。Kinsey,N。等。 光子学的接近零索引材料。 nat。 修订版 mater。 4,742-760(2019)。 3。 自由主义者,I。 &Engheta,N。接近零折射率光子学。 nat。 Photonics 11,149-158(2017)。 4。 vulis,D。I.等。 使用Dirac-cone零索引地材料来操纵光的流动。 众议员prog。 物理。 82,012001(2019)。 5。 alù,A。等。 Epsilon-Near-Zero零材料和电磁源:调整辐射相模式。 物理。 修订版 b 75,155410(2007)。 6。 Silveirinha,M。&Engheta,N。使用Epsilon-near-Zero材料通过亚波长通道和弯曲的电磁能进行隧穿。 物理。 修订版 Lett。 97,157403(2006)。 7。 Liu,R。等。 通过微波频率上的Epsilon-Near-Zero超材料进行电磁隧穿的实验证明。 物理。 修订版 Lett。 100,023903(2008)。 8。 Sustowski,H。等。 光学零索引材料中的无匹配 - 无线性传播。 科学342,1223-1226(2013)。 9。 Gagnon,J。R。等。 物理。 修订版Kinsey,N。等。光子学的接近零索引材料。nat。修订版mater。4,742-760(2019)。3。自由主义者,I。&Engheta,N。接近零折射率光子学。nat。Photonics 11,149-158(2017)。4。vulis,D。I.等。使用Dirac-cone零索引地材料来操纵光的流动。众议员prog。 物理。 82,012001(2019)。 5。 alù,A。等。 Epsilon-Near-Zero零材料和电磁源:调整辐射相模式。 物理。 修订版 b 75,155410(2007)。 6。 Silveirinha,M。&Engheta,N。使用Epsilon-near-Zero材料通过亚波长通道和弯曲的电磁能进行隧穿。 物理。 修订版 Lett。 97,157403(2006)。 7。 Liu,R。等。 通过微波频率上的Epsilon-Near-Zero超材料进行电磁隧穿的实验证明。 物理。 修订版 Lett。 100,023903(2008)。 8。 Sustowski,H。等。 光学零索引材料中的无匹配 - 无线性传播。 科学342,1223-1226(2013)。 9。 Gagnon,J。R。等。 物理。 修订版众议员prog。物理。82,012001(2019)。5。alù,A。等。Epsilon-Near-Zero零材料和电磁源:调整辐射相模式。物理。修订版b 75,155410(2007)。6。Silveirinha,M。&Engheta,N。使用Epsilon-near-Zero材料通过亚波长通道和弯曲的电磁能进行隧穿。物理。修订版Lett。 97,157403(2006)。 7。 Liu,R。等。 通过微波频率上的Epsilon-Near-Zero超材料进行电磁隧穿的实验证明。 物理。 修订版 Lett。 100,023903(2008)。 8。 Sustowski,H。等。 光学零索引材料中的无匹配 - 无线性传播。 科学342,1223-1226(2013)。 9。 Gagnon,J。R。等。 物理。 修订版Lett。97,157403(2006)。7。Liu,R。等。 通过微波频率上的Epsilon-Near-Zero超材料进行电磁隧穿的实验证明。 物理。 修订版 Lett。 100,023903(2008)。 8。 Sustowski,H。等。 光学零索引材料中的无匹配 - 无线性传播。 科学342,1223-1226(2013)。 9。 Gagnon,J。R。等。 物理。 修订版Liu,R。等。通过微波频率上的Epsilon-Near-Zero超材料进行电磁隧穿的实验证明。物理。修订版Lett。 100,023903(2008)。 8。 Sustowski,H。等。 光学零索引材料中的无匹配 - 无线性传播。 科学342,1223-1226(2013)。 9。 Gagnon,J。R。等。 物理。 修订版Lett。100,023903(2008)。8。Sustowski,H。等。光学零索引材料中的无匹配 - 无线性传播。科学342,1223-1226(2013)。9。Gagnon,J。R。等。 物理。 修订版Gagnon,J。R。等。物理。修订版零索引波导中的放松相匹配约束。Lett。 128,203902(2022)。 10。 Alam,M。Z.,Leon,I。D.&Boyd,R。W.氧化含量氧化物在其接近零地区的大型光学非线性。 科学352,795-797(2016)。 11。 Xu,J。等。 单向单光子通过匹配的零索引超材料生成。 物理。 修订版 b 94,220103(2016)。 12。 Mello,O。等。 在零材料接近零材料的钻石Epsilon中扩展了多体超赞。 应用。 物理。 Lett。 120(2022)。 13。 Yang,Y。等。 高谐波产生来自Epsilon-Near-Zero材料。 nat。 物理。 15,1022-1026(2019)。 14。 Jia,W。等。 宽带Terahertz波产生从epsilon-near-Zero材料中产生。 轻科学。 应用。 10,11(2021)。 15。 Choseur,E。J。等。 可见光的N = 0结构的实验验证。 物理。 修订版 Lett。 110,013902(2013)。 16。 Zhou,Z。 &li,y。 基于横向截止模式的有效epsilon-near-Zero(ENZ)天线。 ieee trans。 天线宣传。 67,2289-2297(2019)。Lett。128,203902(2022)。10。Alam,M。Z.,Leon,I。D.&Boyd,R。W.氧化含量氧化物在其接近零地区的大型光学非线性。科学352,795-797(2016)。11。Xu,J。等。单向单光子通过匹配的零索引超材料生成。物理。修订版b 94,220103(2016)。12。Mello,O。等。在零材料接近零材料的钻石Epsilon中扩展了多体超赞。应用。物理。Lett。 120(2022)。 13。 Yang,Y。等。 高谐波产生来自Epsilon-Near-Zero材料。 nat。 物理。 15,1022-1026(2019)。 14。 Jia,W。等。 宽带Terahertz波产生从epsilon-near-Zero材料中产生。 轻科学。 应用。 10,11(2021)。 15。 Choseur,E。J。等。 可见光的N = 0结构的实验验证。 物理。 修订版 Lett。 110,013902(2013)。 16。 Zhou,Z。 &li,y。 基于横向截止模式的有效epsilon-near-Zero(ENZ)天线。 ieee trans。 天线宣传。 67,2289-2297(2019)。Lett。120(2022)。13。Yang,Y。等。 高谐波产生来自Epsilon-Near-Zero材料。 nat。 物理。 15,1022-1026(2019)。 14。 Jia,W。等。 宽带Terahertz波产生从epsilon-near-Zero材料中产生。 轻科学。 应用。 10,11(2021)。 15。 Choseur,E。J。等。 可见光的N = 0结构的实验验证。 物理。 修订版 Lett。 110,013902(2013)。 16。 Zhou,Z。 &li,y。 基于横向截止模式的有效epsilon-near-Zero(ENZ)天线。 ieee trans。 天线宣传。 67,2289-2297(2019)。Yang,Y。等。高谐波产生来自Epsilon-Near-Zero材料。nat。物理。15,1022-1026(2019)。14。Jia,W。等。 宽带Terahertz波产生从epsilon-near-Zero材料中产生。 轻科学。 应用。 10,11(2021)。 15。 Choseur,E。J。等。 可见光的N = 0结构的实验验证。 物理。 修订版 Lett。 110,013902(2013)。 16。 Zhou,Z。 &li,y。 基于横向截止模式的有效epsilon-near-Zero(ENZ)天线。 ieee trans。 天线宣传。 67,2289-2297(2019)。Jia,W。等。宽带Terahertz波产生从epsilon-near-Zero材料中产生。轻科学。应用。10,11(2021)。15。Choseur,E。J。等。可见光的N = 0结构的实验验证。物理。修订版Lett。 110,013902(2013)。 16。 Zhou,Z。 &li,y。 基于横向截止模式的有效epsilon-near-Zero(ENZ)天线。 ieee trans。 天线宣传。 67,2289-2297(2019)。Lett。110,013902(2013)。16。Zhou,Z。&li,y。基于横向截止模式的有效epsilon-near-Zero(ENZ)天线。ieee trans。天线宣传。67,2289-2297(2019)。67,2289-2297(2019)。
i vc irh 新冠疫情对发电厂总产能的影响 [无量纲] 新冠疫情对能源需求的影响 [无量纲] 一年中的天数 [无量纲] 单位政府补贴 [ ] 最高