使用硫固体电解质(SES)的全稳态电池(ASSB)是有吸引力的候选物,因为与使用有机溶剂相比,使用液体型锂离子电池(LIBS)比液体型锂离子电池(LIBS)更长。sulfer ses,即使在干燥室等环境中,也会在暴露于水分时会降低其离子电导率并产生有毒的氢硫。然而,到目前为止,尚未完全阐明水分暴露在ASSB细胞性能上的影响。旨在填补这一知识的差距,本文描述了水分对ASSB阳性电极的耐用性的影响,并在这项研究中以露室模拟的空气暴露或暴露于干室模拟的空气中,在这项研究中为-20°C。在细胞耐用性评估后,在阳性电极上进行了二级离子质谱(TOF-SIMS)测量时间,并使用裸露的SE在细胞中观察到了特征降解模式。
对陶瓷的添加剂制造的实施比其他材料类别更具挑战性,因为大多数塑形方法都需要聚合物粘合剂。激光添加剂制造(LAM)可以提供一条新的无粘合剂合并路线,因为它能够直接处理陶瓷而无需后处理。然而,陶瓷的激光加工,尤其是高性能氧化陶瓷,受到低热冲击性,弱致密性和低光吸收的限制;特别是在可见或近红外范围内。目前缺乏高性能氧化陶瓷的LAM(粉末床融合 - 激光束和定向能量沉积)的广泛审查。此最新的评论对氧化陶瓷领域的过程技术,部分属性,开放挑战和过程监测进行了详细的摘要和批判性分析。提高了准确性和机械强度的提高,可以将氧化陶瓷的含量开放到新领域。
高海拔(HA)(将其定义为海拔2500 m以上的海拔高度),由多种恶劣的环境条件进行了特征。大多数生理适应发生在响应大气压力下的响应,导致氧气压力降低并导致血液氧化饱和度降低(SPO 2),低氧血症。大脑容易受到氧气供应改变的影响。因此,HA暴露会导致情绪状态的不良变化,例如抑郁症[1]和焦虑[2],以及神经认知的改变,例如记忆障碍[3]以及短期和长期HA暴露后的注意力障碍[4,5]。尽管许多报道涉及在上升到HA后发生的生理和神经系统改变,但对HA的长期和永久居民的认知和脑改变的研究较少。大脑功能不仅受到上升后的缺氧影响[6] [6],而且在HA [7]和天然高地的长期暴露后也受到了影响[8]。在暴露于HA的未批准的个体中,睡眠方式可能已经在1600 m以上的海拔高度上受到影响,在某些人的2500 m ON和3000 m以上的受试者中,情绪状态的变化会在某些个体中观察到欣快感或抑郁症的变化。情绪状态改变,包括欣快,争吵,烦躁和冷漠,在快速急性暴露于HA并在48至52 h后返回基线状态后暂时发生[9-11]。In contrast, short- and long-term exposure to HA causes biological, inflam- matory, and structural brain changes that increase the risk of experiencing anxiety and depression symptoms [ 12 ] and neurocognitive dysfunctions such as slower reaction times, reduced attention (>3500 m), impaired learning, spatial and working memory (>4000 m), and impaired retrieval (>5500 m) (Figure 1 ) [ 7 , 8、13、14]。
非常关注植物提取物在牲畜和家禽生产中的应用,作为被禁止添加剂(例如抗生素)的替代品。植物提取物是从植物材料中提取的天然化合物或成分的混合物。由于存在众多具有药理特性的生物活性化合物,因此它们具有巨大的研究潜力。此外,由于它们的天然,可生物降解的性质以及减少对合成化学物质的依赖的能力,它们被认为是可持续和环保的选择。有关植物提取物在青贮饲料保存中施用的庞大科学研究已经报道了这种富集的植物的潜在抗真菌剂(Cock and van Vuuren,2015年),芦荟提取物具有广泛的微生物抑制活性,据报道它具有明显的抑制作用,并且对我的抑制作用具有明显的抑制作用,因此(命中率)(命中率)(命中率)(命中率)。 Al。,2013)。茶厂的有机简易提取物含有各种天然非离子表面活性剂,它们可以与某些抗菌剂合作以拮抗真菌(Hao等,2010)。一些研究报告说,ficus hirta vahl的乙醇提取物
熔融混合的抽象处理参数(聚合物加工中最常规的技术之一)在所得材料的质量和特性中起着重要作用,尤其是在涉及纳米孔孔的情况下。当前的研究研究了螺丝挤出机的变化处理温度,旋转速度和元素,旨在通过改善PE的两个级别的商用大师的纳米粒子来增强聚乙烯(PE)纳米复合材料的机械性能。该研究投资于聚乙烯中常见兼容剂(MAPE)和剪切力的影响。对机械性能,形态和微观结构的变化进行了比较。结果表明,增加的GNP量导致机械性能的预期连续增加,指的是基础聚合物。MAPE的添加并没有显着改善研究系统的性能。 使用更强的剪切力会对性质产生负面影响。MAPE的添加并没有显着改善研究系统的性能。使用更强的剪切力会对性质产生负面影响。
基于快速LI +传导固体电解质(例如Li 7 La 3 Zr 2 O 12(LLZO))的抽象全稳态电池(LLZO)提供了对安全,不易燃率和温度耐受能量存储的透视。尽管有希望,但整个电池组件的陶瓷处理即将达到理论能力,并找到处理大规模和低成本电池电池的最佳策略仍然是一个挑战。在这里,我们解决了这些问题,并报告了由Li 4 Ti 5 O 12 / C- Li 6.25 Al 0.25 la 3 Zr 2 O 12 / Metallic Li提供的能力约70 - 75 AH / kg的固态电池电池,且可逆自行车以2.5 a / kg的速率(用于2.5 –1.0 –1.0 v,95 c,95°C)。发现,在固体电解质电极界面处能力增加和LI +转移是谷物及其连通性的紧密嵌入,可以通过细胞制备过程中的等速压力来实现。我们建议,通过确保在电解质电极界面上确保良好的谷物接触,可以在加工过程中进行简单的陶瓷处理,例如加工过程中的施加压力。在野外的石榴石型全稳态电池组件中,证明了
疲劳裂纹是钢结构的常见缺陷,在不同的负载和各种环境因素的长期影响之后[1]。如果没有及时有效治疗,它最终可能导致结构性疲劳失败。维修和加固技术的出现提供了一种解决此问题的新方法。与更换损坏的结构部件相比,维修和加固技术在时间和成本方面都具有很大的优势[2,3]。在裂纹尖端上使用裂纹停止孔是最常用的临时控制技术之一。在过去的几十年中,许多学者研究了裂纹停止孔的工程应用[4,5]。结果表明,裂纹停止孔的形状,尺寸和姿势的合理设计可以有效地降低裂纹的生长速度并增加残留疲劳寿命。但是,当在疲劳裂纹尖端处理裂纹停止孔时,原始结构的机械强度被削弱,并创建了新的容易疲劳的区域。更重要的是,当裂纹从裂纹停止的边缘启动时,由于存在停止孔的存在,新裂纹的膨胀速率不会改变[6]。作为一种复合材料,纤维增强聚合物(FRP)材料具有高强度重量比,良好的耐腐蚀性和疲劳性能,并且几乎可以将其分为几乎所有所需的形状。在过去的几年中,关于结构缺陷大小的影响[7,8],粘合剂的特性[9,10]和FRP键合法
摘要:在本研究中,我们提出了一种混合制造工艺来生产高质量的 Ti6Al4V 零件,该工艺结合了增材粉末激光定向能量沉积 (L-DED) 用于制造预制件,随后的热锻作为热机械加工 (TMP) 步骤。在 L-DED 之后,材料在两种不同的温度 (930 ◦ C 和 1070 ◦ C) 下热成型,随后进行热处理以消除应力退火。在小子样本上进行拉伸试验,考虑到相对于 L-DED 构建方向的不同样本方向,并产生非常好的拉伸强度和延展性,类似于或优于锻造材料。所得微观结构由非常细粒、部分球化的 α 晶粒组成,平均直径约为 0.8–2.3 µ m,位于 β 相基质内,占样本的 2% 至 9%。在亚β转变温度范围内锻造后,典型的 L-DED 微观结构不再可辨别,并且增材制造 (AM) 中常见的拉伸性能各向异性显著降低。然而,在超β转变温度范围内锻造会导致机械性能的各向异性仍然存在,并且材料的拉伸强度和延展性较差。结果表明,通过将 L-DED 与 Ti6Al4V 亚β转变温度范围内的热机械加工相结合,可以获得适用于许多应用的微观结构和理想的机械性能,同时具有减少材料浪费的优势。
可持续产品,它们可能会通过生态信誉计划获得绿色产品。如果将环境证书用作购买决策的基础,则可以包括国家/国际环境证书,例如FSC,MSC,ASC和/或雨林联盟。应接受相关的等效物,就像天然和无害产品制成的物品一样。它们也可能是有机的,可以根据IFOAM标准家族中列出的有机标准之一(例如USDA有机,欧盟有机等)列出的有机标准之一。如果没有此类认证,该组织应证明用于评估/分类可持续产品的方法是合理的。
环境设计空间(EDS)是为亚音速飞机设计和评估而设计的建模和仿真环境。将其与其他类似框架区分开来的主要功能之一是其执行飞机性能和尺寸,排气排放和噪音预测的能力。由于多个行业标准工具的集成,这三个要素被无缝执行。自2008年的构想以来,EDS已被用来支持多个研究实体和项目,以评估当前和未来的飞机概念和技术。与该领域的专家小组结合,在多年来对其结果和假设进行了校准和修订。因此,它经历了持续的发展,增强了其能力,不仅可以对传统的管子和翼飞机进行建模,还可以对非常规的配置进行建模。在撰写本文的撰写中,其功能范围超出了标准的单线轴和双线轴发动机,包括齿轮风扇,超高旁路涡轮扇形,开放式转子和部分涡轮推进架构。本文概述了如何使用EDS来支持主要的研究。然后,提出了一种开发和校准发动机和飞机模型以匹配现有开源数据的方法。最后,显示了可用的高级发动机和飞机架构的摘要。结果表明,EDS可以创建与现有系统性能紧密相匹配的模型,以及它具有支持未来飞机设计和技术开发研究的功能。