序言 这些对 1996 年版弗吉尼亚统一州级建筑规范 (USBC) 的修订于 2000 年 5 月 22 日根据弗吉尼亚住房和社区发展委员会 (BHCD) 的命令通过,并于 2000 年 9 月 15 日生效。此次通过是根据弗吉尼亚法典第 36 篇第 6 章(§ 36-97 及以下各章)授予 BHCD 的监管权力进行的。通过令是根据《行政程序法》的要求准备的。USBC 规定了在建造、修缮、维护和改变建筑物和结构用途时必须遵守的建筑法规。在实际应用中,规范条文已根据所需的性能水平作出说明,以便于迅速接受新的建筑材料和方法。此外,规范条文允许以尽可能低的成本进行施工,同时符合国家公认的健康、安全、福利、可达性、节能和节水标准。执行 USBC 是每个地方政府建筑部门的责任,地方管理机构可能会收取费用以支付执行费用和因应用该规范而产生的上诉。USBC 提供可选的执行规定,以保护现有建筑物和结构的居住者免受因建筑物和结构的不当维护或使用而产生的健康和安全危害。任何地方政府都可以执行主要
摘要:高效管理可再生能源对于促进环境可持续性和优化清洁能源利用至关重要。本文介绍了一项关于可再生能源社区 (REC) 内能源管理的开创性欧洲规模研究。我们主要关注提高社区的社会福利,引入了一种强化学习 (RL) 控制器,旨在战略性地管理电池储能系统 (BESS) 并协调能源流动。这项研究超越了地理界限,对欧洲各地的各种能源社区和各种能源市场进行了广泛的分析,涵盖了意大利的不同地区。我们的方法涉及实施 RL 控制器,利用最优控制理论进行训练,并在测试阶段仅使用当前时间步骤可用的实时数据。通过在不同环境中进行的模拟,我们证明了我们的 RL 代理与最先进的基于规则的控制器相比具有卓越的性能。该代理对各种场景表现出非凡的适应性,始终超越现有的基于规则的控制器。值得注意的是,我们说明,我们的方法与意大利和欧洲能源市场观察到的复杂模式相一致,达到了与假设对未来数据有完美的理论知识的最佳控制器相当的性能水平。
摘要 — 新一代汽车(例如联网汽车和自动驾驶汽车)的出现为车辆网络和计算管理带来了新的挑战,以提供高效的服务并保证服务质量。边缘计算设施允许将处理从云端分散到网络边缘。在本文中,我们设计并提出了一种端到端、可靠且低延迟的通信架构,该架构允许将计算密集型自动驾驶服务(尤其是自动驾驶仪)分配给边缘计算服务器上的共享资源,并提高自动驾驶汽车的性能水平。该参考架构用于设计自动驾驶汽车、边缘计算服务器和集中式云之间的高级自动驾驶 (A2D) 通信协议。然后,制定了一种使用整数线性规划 (ILP) 的数学规划方法来模拟网络边缘的自动驾驶仪链资源卸载。此外,提出了一种深度强化学习 (DRL) 方法来处理密集的自动驾驶汽车互联网 (IoAV) 网络。此外,还考虑了几种场景来量化优化方法的行为。我们从边缘服务器总利用率、边缘服务器总分配时间和成功分配的边缘自动驾驶仪等方面比较了它们的效率。索引术语 — 边缘计算、自动驾驶汽车 (AV)、人工智能 (AI)、优化、深度强化学习 (DRL)。
摘要。在基于气体的探测器中,几兆电子伏范围内的电子轨道的能量分辨率远低于固有极限。此类事件的延伸轨道长度需要较大的遏制体积,并且通常需要多线比例增益结构来捕获大面积的信号。确定准确的增益图和稳定的比例增益的困难加剧了这一挑战。作为替代方案,由于超低噪声多通道集成电路设计的最新进展,现在似乎可以无需雪崩倍增直接感测轨道图像,至少在电离密度足够高的情况下是如此。在时间投影室 (TPC) 中,由于可以控制边缘效应,因此轨道在空间中的 3-D 定位也应允许更好的能量分辨率。一个特别合适的应用是在高压 136 Xe 气体中寻找无中微子的双贝塔衰变。在衰变的 2.48 MeV Q 值下,使用直接电离成像可能可以实现 ~0.5% FWHM 的能量分辨率。虽然仅比由激发和电离之间的波动设定的固有极限 0.25% FWHM 差两倍,但稳定性考虑表明直接电离成像可以达到这种性能水平,其中电子噪声是主要贡献。
大脑计算机界面(BCI)正在为患有严重残疾的人提供替代的沟通渠道,而大部分嗡嗡声来自该方面,但最近几位硅谷有远见的人声称BCIS声称BCIS将改变我们未来与技术的交流方式(Zuckerberg,Zuckerberg,Jepsen,Jepsen,Musk,Johnson,Johnson,...)。bcis使用多种算法依靠需要通过示例基于示例的学习过程来调整的参数,以精神控制应用程序或实现其他形式的通信的目的解码大脑信号。因此,此学习过程至关重要,并且经常在单个BCI用户上执行以确保卓越的性能水平。学习过程可以在计算上很耗时,并且通常涉及先验知识,并且可以对用户征税。极限学习机(ELMS)已在各种AI应用中使用,但在BCIS中尚未使用,在BCIS中,它们因其良好的概括性能和比(深度学习)网络快数千次学习的能力而受到赞誉。elms实际上是单层或多层网络,其隐藏的神经元权重是随机分配的,并且在单个步骤中学习的输出权重。以最简单的形式沸腾,归结为单个隐藏层的sigmoid神经网络和线性输出神经元,其权重是通过应用伪内膜获得的。
摘要:本文介绍了一种针对语音情感的新型基于图形的学习技术,该技术已专门针对人形机器人内的能源有效部署而定制。我们的方法论代表了可扩展图表示的融合,该图表源于图形信号处理理论的基础原理。通过研究循环或线图的利用,作为塑造强大的图形卷积网络(GCN)构造的基本成分,我们提出了一种方法,可以允许捕获语音信号之间的关系以解码复杂的情感模式和反应。我们的方法与诸如IEMOCAP和MSP -IMPROV之类的既定数据库进行了验证和基准测试。我们的模型优于稳定的GCN和普遍的深度图体系结构,证明了与ART方法论状态相符的性能水平。值得注意的是,我们的模型在显着减少了可学习参数的数量的同时,实现了这一壮举,从而提高了计算效率并加强其对资源约束环境的适用性。这种提出的基于图形的杂种学习方法用于人形机器人内的多模式情绪识别。其提供竞争性能的能力,同时简化计算复杂性和能源效率,这代表了一种新颖的情绪识别系统的新方法,可以满足各种真实世界的应用,其中人类机器人中情绪识别的精确性是一个关键的必要条件。
美国全球定位系统 (GPS) 标准定位服务 (SPS) 由空间定位、导航和授时 (PNT) 信号组成,这些信号免费提供,供全球和平民用、商业和科学用途使用。本 SPS 性能标准 (SPS PS) 规定了广播信号参数和 GPS 星座设计方面的 SPS 性能水平。美国政府致力于达到并超过本 SPS PS 中规定的最低服务水平,这一承诺已编入美国法律 (10 U.S.C.2281(b))。自 1993 年 GPS 初始运行能力 (IOC) 以来,实际 GPS 性能一直达到并超过 SPS PS 中规定的最低性能水平,用户通常可以期待性能比此处描述的最低水平有所提高。例如,以目前 (2007) 的空间信号 (SIS) 精度,设计良好的 GPS 接收器在 95% 的时间内已经实现了 3 米或更高的水平精度和 5 米或更高的垂直精度。许多美国机构持续监测 GPS SPS 的实际性能,包括联邦航空管理局 (FAA),该机构在其国家卫星试验台 (NSTB) 网站 ( http://www.nstb.tc.faa.gov/ ) 上发布季度性能分析报告。鼓励感兴趣的读者参考此来源和其他来源以了解最新的 GPS 性能。作为美国对全球 GPS 用户社区承诺增强的另一个例子,美国总统于 2007 年宣布,不会将选择性可用性内置于现代化的 GPS III 卫星中。尽管 GPS 将来会提供三种新的现代化民用信号:L2C、L5 和 L1C,但此版本 SPS PS 中的性能规范仅适用于 L1 (1575.42 MHz) 粗/捕获 (C/A) 信号的用户,因为这是目前唯一达到完全运行能力的民用 GPS 信号。此外,本文档介绍了具有超过 24 颗卫星的“可扩展 24 槽”GPS 星座,“基线 24 槽”GPS 星座定义与上一版本的 SPS PS 保持不变。随着 GPS 对其民用服务进行现代化改造,SPS PS 将定期更新。此版本的 SPS PS 修订并取代了 2001 年 10 月 4 日发布的上一版本,并达到或超过了上一版本的所有性能承诺。鼓励对 GPS 教程信息感兴趣的读者参考有关该主题的大量参考资料。此次更新的重大变化包括 SIS 距离精度的最低水平提高了 33%,从 6 米均方根 (rms) 精度提高到 4 米 rms(7.8 米 95%),以及增加了 SIS 距离速度精度和距离加速度精度的最低水平,这些在 SPS PS 的先前版本中均未指定。除了指定 GPS 最低性能承诺外,SPS PS 还是一份旨在补充 GPS SIS 接口规范 (IS-GPS-200) 的技术文档。最后,根据美国天基 PNT 政策 (http://pnt.gov/policy/),SPS PS 强调了美国致力于与全球导航卫星系统 (GNSS) 和星基增强系统 (SBAS) 提供商合作,以确保 GPS 与新兴系统的兼容性和互操作性,供全球和平民用。
发展 罗克韦尔柯林斯致力于为您提供创新、可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都会将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 RF 功率输入 操作:400 W PEP + 1 dB 调谐:85 W 平均最大 初始调谐时间:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSwR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AMe、Cw 和 PSK 温度范围 -40°C 至 +70°C 操作 振动 D0-160C Cat C、y、L 冲击 6 g,持续时间为 11 MS 碰撞安全性 15 g 峰值,持续时间为 11 MS 高度非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C, 240 小时曝光尺寸高度:最大 7.52 英寸宽度:最大 5.02 英寸长度:15.72 +/- 0.06 英寸重量最大 17 磅
发展 罗克韦尔柯林斯致力于为您提供创新可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都能将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 射频功率输入 工作:400 W PEP + 1 dB 调谐:平均最大 85 W 调谐时间 初始:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSWR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AME、CW 和 PSK 温度范围 -40°C 至 +70°C 工作 振动 D0-160C Cat C、Y、L 冲击 6 G,持续时间为 11 MS 碰撞安全性 15 G 峰值,持续时间为 11 MS 高度 非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C,暴露 240 小时 尺寸 高度:最大 7.52 英寸宽度:最大 5.02 英寸 长度:15.72 +/- 0.06 英寸 重量:最大 17 磅
发展 罗克韦尔柯林斯致力于为您提供创新可靠的 HF 解决方案。无论是全新的全集成高频数据链路 (HFDL) 无线电、低成本 HFDL 升级套件还是数字调谐天线耦合器,罗克韦尔柯林斯都能将您的 HF 投资提升到更高的性能水平。规格 频率范围 2.0 至 29.9999 MHz 连续 射频功率输入 工作:400 W PEP + 1 dB 调谐:平均最大 85 W 调谐时间 初始:2 至 4 秒(典型值),7 秒(最大值) 快速调谐:250 毫秒 调谐精度 1.3:1 VSWR 最大值 主电源 115 V ac,400 Hz 占空比 连续,平均功率为 125 W 调制类型 SSB、AME、CW 和 PSK 温度范围 -40°C 至 +70°C 工作 振动 D0-160C Cat C、Y、L 冲击 6 G,持续时间为 11 MS 碰撞安全性 15 G 峰值,持续时间为 11 MS 高度 非加压、非温控,最高可达 50,000 英尺 湿度 0% 至 95%,65°C 至 38°C,暴露 240 小时 尺寸 高度:最大 7.52 英寸宽度:最大 5.02 英寸 长度:15.72 +/- 0.06 英寸 重量:最大 17 磅