摘要 首次在高压、低温条件下表征了选择性双光子吸收共振飞秒激光电子激发标记 (STARFLEET) 测速技术。研究在美国宇航局兰利研究中心的 0.3 米跨音速低温风洞中进行,流动条件涵盖了该设施的整个运行范围;总压力范围从 100 kPa 到 517 kPa,总温度从 80 K 到 327 K,马赫数从 0.2 到 0.85。检查了 STARFLEET 信号强度和寿命测量的热力学依赖性,因为强度和寿命都会影响测量精度。发现信号强度与密度成反比,而寿命与密度几乎成线性关系,直到接近氮的液汽饱和点。速度测量的准确度和精度是在整个条件范围内评估的,标准误差确定为 1.6%,而精度范围约为自由流速度的 1.5% 至 10%。还观察到精度具有温度依赖性,这可能是由于在较高密度下寿命较长所致。
标签 203 压力高度 -1,000 至 +53,000 英尺 标签 204/220 气压校正高度 -1,000 至 +53,000 英尺 标签 205 MACH 数值 0.200 至 0.999 MACH 标签 206 计算空速 CAS 0/40 至 450 节 标签 210 真空速 TAS 0/100 至 599 节 标签 207 最大值。允许空速 VMO 150 至 450 节 标签 211 总气温 TAT -60 至 +99 °C 标签 213 静态气温 SAT -99 至 +60 °C 标签 212 垂直速度 0 至 20,000 英尺/分钟标签 215 冲击压力(已修正)0 至 372.5 mbar 标签 217 静压(已修正)0 至 64 inHg 标签 235/237 气压设置 QNH 20.67 至 31.00 inHg 标签 234/236 气压设置 QNH 700 至 1,050 mbar 标签 242 总压力 135.5 至 1354.5 mbar 标签 270 离散字 #1 标签 353 指示空速 IAS 0/40 至 450 节 标签 377 设备标识符 006
标签 203 压力高度 -1,000 至 +53,000 英尺 标签 204/220 气压校正高度 -1,000 至 +53,000 英尺 标签 205 MACH 数值 0.200 至 0.999 MACH 标签 206 计算空速 CAS 0/40 至 450 节 标签 210 真空速 TAS 0/100 至 599 节 标签 207 最大值。允许空速 VMO 150 至 450 节 标签 211 总气温 TAT -60 至 +99 °C 标签 213 静态气温 SAT -99 至 +60 °C 标签 212 垂直速度 0 至 20,000 英尺/分钟标签 215 冲击压力(已修正)0 至 372.5 mbar 标签 217 静压(已修正)0 至 64 inHg 标签 235/237 气压设置 QNH 20.67 至 31.00 inHg 标签 234/236 气压设置 QNH 700 至 1,050 mbar 标签 242 总压力 135 至 1354.5 mbar 标签 270 离散字 #1 标签 353 指示空速 IAS 0/40 至 450 节 标签 377 设备标识符 006
现代 CFD 技术为风洞升级提供了新的机会。在这里,我们应用 RANS 模型来计算 ONERA Meudon 中心 S3Ch 跨音速风洞回路的流量。通过在风扇位置实施驱动盘以及在沉降室热交换器位置实施总压力和温度损失来设置流量。该方法针对沉降室和测试段中可用的一组简化实验流量数据进行了验证。将结果与标准设计指南一起考虑,以确定对该回路的修改,以提高流动质量。当风洞在不久的将来移至不同位置时,将实施新回路。另一部分工作致力于计算测试段的自适应顶壁和底壁。作为升级当前工具的尝试,该工具使用测试段内流动的线性化势模型,我们考虑了 RANS 方法并定义了一个新的优化过程,以尽量减少壁对目标流动的影响(与自由飞行条件下的流动相比)。新方法应用于跨音速条件下机翼翼型的特殊情况,仅考虑模拟数据时就显示出接近完美的校正。
本研究通过一个设计用于太空应用的 10 千瓦碱性燃料电池案例,逐步介绍了最新的燃料电池基础知识、热力学和电化学原理以及系统评估因素。该系统还产生 100 公斤纯水和 5.5 千瓦热量。该系统使用 MATLAB 和 ANSYS Fluent 建模。然后,使用文献中的理论和实验结果验证该模型。对各种设计和操作参数以及材料选择进行了参数研究,以优化整体性能。在 150 mAcm-2 电流密度下获得 0.8 V 的净输出电压,总效率为 75%。结果表明,增加电解质厚度或工作温度会导致净电压输出降低。此外,通过了解不同参数对最小化双极板压降的贡献,可以提高燃料电池通过双极板的性能。我们发现,通过优化选择流体流速、通道宽度、通道深度、通道数量和电流密度,可以最大限度地降低整个双极板的压降。相对湿度对压降有显著影响。结果表明,增加相对湿度会导致压降上升。最后,CFD 模拟表明,由于这些位置的停滞特性,双极板中的端区会积聚流体。因此,这些位置的总压力最高。本文的主要贡献之一是研究 KOH 浓度对不同工作温度下 AFC 性能的影响。此外,还分析了各种设计和操作参数,以了解它们对燃料电池整体性能的影响。
在给定压缩功的情况下提高总压力比的一种方法是引入带中间冷却的多级压缩,其中气体分阶段压缩并在每级之间通过使气体通过称为中间冷却器的热交换器进行冷却。航空航天工业中的燃气涡轮发动机需要高总压力比。为了实现更高的压力比,压缩机分为低压压缩机(LPC)和高压压缩机(HPC)。这样做是为了在LPC和HPC之间引入中间冷却器。压缩气体在LPC的出口处具有相对较高的温度。通过使用横流或逆流空对空热交换器,压缩空气在一侧流动,低温冲压空气在另一侧流动,压缩空气可以在进入HPC之前得到冷却。稳流压缩功或给定压缩功的压力比与压缩空气的比容成正比[8]。中间冷却器降低温度,从而降低压缩空气的比容,从而提高热力循环效率。在燃气涡轮发动机中,离开涡轮的废气温度通常比离开 HPC 的空气温度高得多。可以结合再生器或回热器,即横流或逆流热交换器,将热废气中的热量传递给压缩空气。因此,热效率提高,因为废气中应该被排放到周围环境中的部分能量被回收以预热进入燃烧室的空气。当使用中间冷却器时,回热器更有优势,因为存在更大的回热潜力。对于高总压力比,回热器并不有效,尤其是考虑到其成本、尺寸和重量。图 1 显示了概念草图,将不同燃气涡轮循环的热效率与总压力比进行比较。一般而言,中间冷却和回热燃气涡轮循环在相对较低的总压力比(例如小于 30)下有效。没有回热的中间冷却燃气涡轮循环仅在非常高的总压力比下有效。图 2 说明了中冷和回热燃气轮机循环。
本研究涉及光束-目标相互作用模拟的开发和验证,以确定给定目标几何形状、表面辐射强度和自由流条件的目标温度分布随时间的变化。通过数值和实验研究了湍流超音速流动的影响。实验在弗吉尼亚理工大学超音速风洞中进行,喷嘴速度为 4 马赫,环境总温度,总压力为 1。1 × 10 6 Pa,雷诺数为 5 × 10 7 / m。目标由涂成平黑色的 6.35 毫米不锈钢板组成。用 300 瓦连续光束镱光纤激光器照射目标,产生 4 毫米高斯光束,光束直径为 1.08 微米,距前缘 10 厘米,其中存在 4 毫米湍流边界层。吸收的激光功率为 65、81、101、120 瓦,最大热通量在 1035 至 1910 W/cm2 之间。使用中波红外摄像机测量目标表面和背面温度。还使用八个 K 型热电偶测量背面温度。进行了两次测试,一次是流动,另一次是流动。对于流动情况,隧道启动后开启激光器,流动达到稳定状态。对于流出情况,板以相同功率加热,但没有超音速流动。通过从流出温度中减去流动温度可以看到冷却效果。此温度减法有助于消除偏差误差,从而显着降低整体不确定性。使用 GASP 共轭传热算法模拟 81 和 65 瓦的实验。大多数计算都是使用 Spalart-Allmaras 湍流模型在 280、320 单元网格上进行的。进行了网格收敛研究。与 65 瓦的情况相比,81 瓦的情况显示出更多的不对称性,并且在上游发现了一个冷却增加的区域。通过热电偶和红外温度测量也可以看到背面的不对称性增加。对于流出的情况,计算低估了表面温度 7%。对于 65 瓦和 81 瓦的情况,靠近中心的表面冷却都被低估了。对于所有功率设置,对流冷却都会显著增加达到给定温度所需的时间。
b,EGFR-PTP相互作用网络的方案。配体EGFR(E P)与PTPRG(P RG)和PTPN2(P n 2)相互作用。配体EGFR(E -E P)促进E p的自催化。因果链接 - 纯黑线;弯曲的箭头线 - 扩散,PM-质膜,ER-内质网。另见图1-图1B。C,在细胞极化过程中信号诱导的形状变化。箭头:局部边缘速度方向。Zoom:细胞的粘弹性模型 - 弹性和粘性元件的平行连接。P总计:总压力; V:当地的内存速度; L:粘弹性状态。粗字母:向量。细胞膜轮廓:[0,2π]。d,顶部:空间EGF分布的计算机演变。底部:EP的Kymograph for Handomation在(b)中网络的反应扩散模拟中的临界性。三角形 - 梯度硬化。e,用(c)中的模型获得的颜色编码E P的相应示例性细胞形状。f,顶部:颞pro纤维e p(黑色)和e -e p(灰色)。绿色阴影区域:EGF梯度存在。底部:具有表示捕获状态空间区域(彩色)和相应时间尺度的系统的状态空间轨迹。另请参见图1-视频1。厚/细线:信号前置/缺失。g,在e示例中的硅细胞形态变化中的定量变化。三角形 - 梯度持续时间。h,左:与G中相同,只有从同一方向用两个连续的动态梯度(三角形)刺激时。第二梯度在第一个的内存阶段。另见图1-图1d。右:第二个梯度(橙三角形)的方向相反。另见图1-图补充1E。虚线:g。平均值±S.D.显示了n = 3。参数:方法。在(D-H),绿色(橙)/红线:刺激存在/不存在。