转换走廊的上限由机翼失速和俯仰姿态决定,而上限则由所需功率和旋翼桨叶拍动决定。当机翼升力的增加与旋翼产生的升力的减少相匹配时,在恒定高度下成功实现从直升机到飞机配置的转换。目前,转换机动由飞行员管理,一般来说,飞行员的工作量高于飞行的其他阶段,特别是,在较高的发动机舱倾斜率下,操纵品质等级会下降(参考文献3)。考虑到在空中交通管制 (ATC) 的指导下在民用倾转旋翼机上执行转换机动的可能性,这种情况可能不是最佳的。此外,从直升机到飞机配置的转换以及从飞机到直升机配置的转换都具有高结构载荷的特点,无论是在旋翼上还是在机身上(参考文献4 , 5 )。
16. 摘要 战略公路研究计划 (SHRP) 是一个耗资 1.5 亿美元的 5 年研究计划,针对四个领域:沥青、混凝土、公路运营和路面工程。这项工作产生了 128 种产品,每种产品都可能是设备、程序、规范等。这些产品中的许多产品和 SHRP 研究的其他方面都适用于机场路面,但这些技术必须单独评估才能确定其实用性。这些评论已被组织成情况说明书,提供产品的简要描述和对该技术是否适用于联邦航空管理局 (FAA) 路面及其使用中涉及的技术问题的评估。已根据当前的 FAA 沥青混合料设计对 SHRP 沥青混合料设计系统 (SUPERPAVE ® ) 进行了评估。 SHRP 期间进行的沥青混合料测试(恒定高度重复简单剪切、弯曲梁疲劳和热应力约束试样测试)表明,重型 SHRP 和重型 FAA 实验室制备的试样在性能相关材料特性方面没有显著差异。其中包括关于 FAA 采用和/或修订 SHRP 沥青技术方面的建议。
无人机已成为执行航空任务的变革性工具,这些工具曾经对载人飞机有挑战,提供了可观的安全福利,经济优势和环境增长。本文介绍了一种创新的方法,用于针对智能导航应用程序量身定制的自动驾驶无人机的设计和分析,这是受激光相机技术与GNSS(全球导航卫星系统)集成的融合的基础的。这项研究中的无人机是四轮驱动器,配备了DYS DYS D2836-6 1500KV电动机和30A BLDC ESC进行控制。它的电源是橙色的5200mAh 4s Lipo电池,可提供效率和寿命。无人机的核心位于基于ARM Cortex M4的控制器,该控制器精心策划了其自动飞行。它表现出较大的操作高度范围,保持恒定高度在地面高度5到20米之间,同时达到每秒2米的最高速度。这项研究的核心创新在于LiDAR-CAMERA融合技术的整合。利用rplidar,其范围为180米,显着点云密度为每平方米1000点,该无人机具有前所未有的精度来感知其周围环境。随附的摄像头具有高分辨率1920 x 1080像素传感器,具有360度水平和180度垂直视野的视野,促进了全面的视觉数据采集。对于对象识别和跟踪,无人机采用Yolov4算法进行实时识别,并利用Kalman过滤器进行精确的对象跟踪。计算机视觉中的这些进步对无人机的自主导航功能产生了重大贡献。无人机的导航能力与APM2.5 NEO-M8N GNSS接收器相辅相成,以确保精确的地理空间定位。