b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'
摘要本文讨论了经济增长和转型的分析以及恒定价格部门GDP的概念,通常被理解为衡量与实际因素输入有关的实际因素奖励。它回顾了对GDP数据基础的此类统计和统计惯例的批评,它们的重点是当前价格因素收入以及从重估净产量中构建恒定价格部门GDP的实践的含义(总输出较少的非因素输入)。创新,它显示了距基本年度一年后实际部门因素输入的恒定价格的重新计算如何不一定等于重估的总产出较少的非因素输入,这是此类数据的通常基础。要求其平等的会计身份仅适用于当前价格。因此,恒定价格部门GDP数据不能衡量实际因素输入。尽管如此,分析结构转化的经济学家的分析框架通常会假设他们以恒定的价格部门GDP的量度(当他们没有的情况下)衡量了实际因素输入的量度。这抑制了分析与激励措施正确互动,通常通过采用生产函数方法来忽略不平衡的可能性,这种方法认为恒定的价格部门数据测量实际因素输入的变化,预计技术条件会确定激励措施(因素奖励)。本文通过检查越南的工作来表明确认偏见的风险。1个关键词结构性变化,国民收入会计,经济增长,经济发展,确认偏见。1。简介1.1。GDP在本文中,我讨论了恒定价格部门GDP。我的意思是指统计报告在扇区(例如服务)或子行业(例如服务,零售贸易中)生成的GDP,这些统计数据被重新估算为以某种方式与价格变化无关。可以通过对Sulcev rf a Bave a Bave \ eau(cxuueqwo \ 2010 [GSO 2020])进行重新评估,可以做到这一点(例如越南总统计局(GSO))
摘要:临界功率 (CP) 概念的研究和应用已持续数十年。CP 测试可估计两个不同的参数 CP 和 W ′,它们分别描述有氧和无氧代谢能力。各种数学模型已用于估算各种运动方式的 CP 和 W ′ 参数。最近,CP 模型已应用于动态恒定外部阻力 (DCER) 锻炼。在各种连续、全身、动态运动中建立的相同双曲线关系也已在上身、下身和全身 DCER 锻炼中得到证实。负荷与重复次数关系的渐近线定义为临界负荷 (CL),曲率常数为 L ′ 。CL 和 L ′ 可以通过用于推导 CP 的相同线性和非线性数学模型来估算。本综述的目的是 (1) 概述连续、动态锻炼方式中的 CP 概念;(2) 描述该模型在 DCER 锻炼中的最新应用; (3)展示如何应用 DCER 锻炼的数学建模来进一步了解疲劳和个人表现能力; (4)就估计 CL 测试参数的方法提出初步建议。
b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'
在本文中,我们研究了容错量子计算所需的空间开销的渐近缩放。我们表明,标准阈值定理中的多对数因子实际上是不需要的,并且存在一个容错结构,它使用的量子比特数仅比理想计算的量子比特数多一个常数因子。这个结果是 Gottesman 推测的,他建议用具有恒定编码率的量子纠错码代替标准阈值定理中的级联码。当时的主要挑战是找到一个合适的量子码系列以及一个即使在噪声综合征下也能工作的高效经典解码算法。效率约束在这里至关重要:请记住,量子比特本质上是有噪声的,并且在解码过程中故障会不断累积。因此,解码器的作用是在整个计算过程中控制错误的数量。
揭示缩放规则对于理解生命系统的形态、生理和进化是必不可少的。对动物大脑的研究揭示了一般模式,例如哈勒规则,以及特定动物分类群的特定模式。然而,从未进行过旨在研究昆虫大脑中整个神经网和细胞体皮的比例的大规模研究。在这里,我们对 26 个科和 10 个目中的 37 种昆虫的成年大脑进行了形态测量研究,体积从最小到最大相差超过 4,000,000 倍,结果表明,所有研究的昆虫的神经网与细胞体皮的体积比都相似,为 3:2。所有昆虫的异速生长分析表明,神经网体积与大脑体积的比例严格等距变化。特定分类群、大小组和变态类型的分析也表明神经网的相对体积没有显著差异;在所有情况下都观察到等距。因此,我们建立了一个新的缩放规则,根据该规则,昆虫大脑中整个神经丛的相对体积平均为 60% 并保持不变。
量子计算理论中的一个基本问题是了解执行一组通用逻辑量子门以达到任意精度的最终时空资源成本。在这里,我们证明 Turaev-Viro 量子纠错码中的非阿贝尔任意子可以通过恒定深度局部酉量子电路移动代码距离的量级,然后进行量子比特排列。我们的门受到保护,因为错误字符串的长度不会增加超过一个常数倍。当应用于斐波那契码时,我们的结果表明,可以通过恒定深度酉量子电路在编码量子比特上实现通用逻辑门集,而不会增加空间开销的渐近缩放。这些结果也直接适用于表面代码中拓扑缺陷的编织。我们的结果将编织的概念重新表述为一个有效的瞬时过程,而不是一个绝热的缓慢过程。
本文介绍了一种独立运行的 DC-AC 逆变器设计,可直接从太阳能光伏 (PV) 向负载提供电能,而无需通过电池。在无电池太阳能光伏中,太阳能光伏的输出电压始终根据太阳辐射和温度而变化,因此对具有恒定输出电压的 DC-AC 逆变器进行建模成为一个挑战。该设计由升压转换器、H 桥开关和驱动器以及 LC 滤波器组成,用于产生正弦交流电压作为输出到负载。为确保恒定的逆变器输出电压,该设计配备了基于电压控制模式的闭环 PI 控制器。该设计由 PSIM 建模和仿真。PV 直流输入根据辐照值 (W/m 2 ) 设定变化,输出连接到额定电压为 220 Vac 和标称电流为 3.4 A 的负载。结果表明,在辐照度变化为 600-1500 W/m 2 时,逆变器能够维持 220 Vac 0.91%、50 Hz 的输出电压,这仍然在基于标准的电压范围内。DC-AC 逆变器在 600 W/m 2 时产生的效率为 97.7%,在 1500 W/m 2 时产生的效率为 83.6%。
基于时间的信号处理已经成为超深亚微米混合信号电路设计的一种很有前途的解决方案[1]。基于时间的电路受益于CMOS技术的扩展,因为它不受伴随而来的负面影响(例如晶体管的更差的信噪比和更低的固有增益)的影响。它广泛应用于频率生成(数字锁相环)、电源转换器(脉冲宽度调制DC-DC)、数据转换(基于时间的ADC(TBADC))和节能神经网络加速[1]。在基于时间的信号处理的各种应用中,TBADC引起了极大的关注[2]。TBADC具有友好的数字导向,并且在功耗和芯片面积方面比基于电压的ADC具有潜在优势。最近已经报道了几千兆赫的TBADC[1-3]。[2]提出了一种基于余数系统(RNS)的2GS/s 8位TBADC。RNS量化方法减少了比较器的数量,但功耗仍然很高。 [1] 报道了一种两步 1GS/s 8 位 TBADC,功耗为 2.3mW。与其他千兆赫 TBADC [1] 相比,它实现了更好的能效。然而,由于复杂的两步结构,采样率被限制在 1GHz 以下。值得注意的是,电压时间转换器 (VTC) 性能不佳是这些已发布的高速 TBADC 的瓶颈。VTC 的线性度/动态范围、功耗和带宽之间的现有权衡阻碍了高速低功耗 TBADC 设计的进展。
摘要。BIKE(位翻转密钥封装)是 NIST 后量子密码标准化过程中一个很有前途的候选方案。它是一种基于代码的密码系统,具有定义简单、底层安全性易于理解和性能优异等特点。该密码系统中最关键的步骤是纠正 QC-MDPC 线性码中的错误。BIKE 团队在标准化过程的第 1 轮和第 2 轮中提出了用于此步骤的位翻转解码器变体。在本文中,我们提出了一种对硬件实现更友好的替代解码器,从而实现与文献相当的延迟区域性能,同时引入了电源侧通道弹性。我们还表明,我们的设计可以使用很少的通用逻辑构建块来加速所有密钥生成、封装和解封装操作。