摘要 尽管在发现新原子核、建模微观原子核结构、核反应堆和恒星核合成方面取得了进展,但我们仍然缺乏系统工具(例如网络方法)来了解 JINA REACLIB 中编译的 7 万多种反应的结构和动力学。为此,我们开发了一个分析框架,通过计算进入和离开任何目标核的中子和质子数,可以很容易地知道哪些反应通常是可能的,哪些是不可能的。具体而言,我们在此组装一个核反应网络,其中节点代表核素,链接代表核素之间的直接反应。有趣的是,核网络的度分布呈现双峰分布,与无标度网络的常见幂律分布和随机网络的泊松分布明显不同。基于 REACLIB 中截面参数化的动力学,我们意外地发现,对于速率低于阈值 λ < e − T γ 的反应,该分布具有普遍性,其中 T 是温度,γ ≈ 1.05。此外,我们发现了三条控制核反应网络结构模式的规则:(i)反应类型由链接选择决定,(ii)在核素 Z vs N 的二维网格上,反应核素之间的网络距离很短,(iii)每个节点的入度和出度都彼此接近。通过结合这三个规则,无论核素图如何扩展,我们的模型都可以普遍揭示隐藏在大型密集核反应网络中的底层核反应模式。它使我们能够预测代表尚未发现的可能的新核反应的缺失环节。
摘要。大多数恒星形成块状和亚式结构簇。这些特性也出现在恒星形成云的水力动力模拟中,这为幼年恒星簇的n-身体运行提供了一种逼真的初始条件。然而,在组合时间方面,通过水力学模拟生产大量的初始条件非常昂贵。我们引入了一种新型技术,该技术以微小的计算成本从给定的水力学模拟样本中生成新的初始条件。尤其是我们应用层次聚类算法来学习恒星之间空间和运动学关系的树表示,其中叶子代表单颗恒星,节点描述了在越来越大的尺度下群集的结构。通过简单地修改恒星群集的全局结构,而在使小规模的属性不变的同时,可以将此过程用作随机生成新恒星的基础。
摘要。本文在量子方法的背景下,对利用机器学习技术进行了深入的探索。我们开发并实施了一种新型的混合量子Wasserstein gan,用于将经典状态的任意分布加载到量子状态,这超出了其财务状况。特别是,如果目标分布是经典的,则我们的混合方法消除了几种潜在的不稳定性来源,并且与完全量子生成的模型相比,其性能优越。我们的QWGAN可用于捕获资产在成熟度时的概率分布,并将其转换为量子状态,因为在合成和真实数据实验上进行了反对。在选项定价上下文中,我们使用此方法提供了完整的管道,并利用迭代量子估计算法来得出预期的期权收益,从而确保与传统方法相比,误差缩放的二次增强。
2024 年 5 月 1 日联系人:Lindsey Cousins lindsey@baysidegraphics.net 宣布 RNASA 2024 年恒星奖获奖者 德克萨斯州休斯顿(2024 年 5 月 1 日)。扶轮国家空间成就奖 (RNASA) 基金会于 2024 年 4 月 26 日星期五在年度空间奖颁奖晚会上颁发扶轮国家空间成就奖 (RNASA) 恒星奖,以表彰太空工作者的奉献精神。每年,航空航天界都焦急地等待宣布扶轮国家空间成就奖 (RNASA) 恒星奖获奖者。2024 年恒星奖评估小组 Michael Coats、Eileen Collins、Sandra Magnus 和 Michael Hawes 根据哪些成就推动了美国的太空能力并最有望实现未来的能力来选出获奖者。在收到的 161 个提名中,评估小组选出了 29 名个人和 9 个团队在当晚的庆祝活动开始之前,所有提名者都获得了参观约翰逊航天中心的幕后之旅,并在 Clear Lake Hilton 酒店享用了午餐。恒星奖委员会主席 Rubik Sheth、RNASA 基金会主席 Rodolfo González 和航天中心扶轮社主席 Randy Straach 对提名者表示欢迎。宇航员 Thomas Marshburn 是今年恒星午宴的演讲嘉宾。每位提名者都收到了该公司捐赠的 Fisher 太空笔。Fisher 太空笔最初由阿波罗登月任务的宇航员携带,至今仍在载人航天飞行中使用。它们经过精密组装、手工测试,保证在水下、任何角度(包括倒置)、极端温度以及零重力条件下都能正常工作。所有恒星奖提名者都拍了照,并获得了一张带有美国国旗的特殊纪念证书,该证书随 SpaceX Crew-6 航班上的机组人员补给货物一起飞行,并于 2023 年 3 月 3 日至 2023 年 4 月 15 日乘坐 SpaceX-27 航班返回。在停靠国际空间站期间,这些物品飞行了 1700 多万英里。2024 年 4 月 26 日,宇航员“Woody”Hoburg 和宇航员 Jasmin Moghbeli 在 RNASA 晚会上宣布了恒星奖获奖者,并向他们颁发了雕刻的大理石奖杯。四个类别(早期职业、中期职业、晚期职业和团队)的获奖者如下:
G类(IgG)的母体免疫球蛋白保护后代免受肠道感染的侵害,但是何时,何时何地以及这些抗体是生理产生的,并赋予保护仍然神秘。我们发现,成年小鼠中的循环IgG优先结合 - 生命肠道的共生细菌,而不是自己的成年肠道细菌。igG-分泌针对早期生命的肠道细菌的分泌浆细胞出现在断奶后的肠道中,在那里保持成年。操纵暴露于肠道细菌或浆细胞发育之前,但并非此后,断奶会减少IgG-分泌靶向早期生命肠道细菌的浆细胞。此外,这种抗肠道分子IgG反应的发展与早期生命区间一致,其中结肠中存在杯状细胞相关抗原通道(GAP)。在早期生命中被B细胞消融或细菌暴露减少的大坝的后代更容易受到肠道病原体挑战的影响。与当前的概念相反,保护性母体IgG针对后代中的肠道分子而不是肠病原体。这些早期的生活事件影响了反 - 共生IgG生产,具有保护后代的世代相传效应。
上下文。磁性中子星(NSS)通常在其X射线光谱中表现出回旋谐振散射特征(CRSF)。回旋线被认为是在积聚柱中的辐射冲击中产生的。高光度NSS在回旋通线(E CRSF)和X射线光度(L X)之间显示出平滑的抗相关性。目标。已经指出,如果辐射冲击是循环基因线形成的位点,则观察到的高发光NSS中观察到的E CRSF-L X平滑抗相关与理论上预测的抗相关性与理论上的预测。电击高度与亮度近似线性增加,而偶极磁场作为距离的立方功率下降,从而意味着当亮度通过数量级的级数时,相反,与观察相反,则相反。由于没有其他候选位点可以进行回旋线形成,因此我们在辐射冲击时重新审查了与辐射冲击时的亮度的预测变化率,仔细观察所涉及的物理学。方法。我们开发了一个纯粹的分析模型,该模型描述了观察到的回旋能质心对冲击阵线高度的总体依赖性,包括相对论的增强和重力红移的影响。相对论的增强效应是由于相对于冲击的参考框架上游吸积等离子体的轻度相对论运动所致。reults。我们表明,相对论的影响明显削弱了预测的E Crsf-l x抗相关。我们发现,环形线能的能量随(a)(a)由于偶极磁场引起的冲击高度而变化。我们使用我们的模型来拟合X射线源V0332 + 53的数据,该数据表现出弱负相关,并证明该模型可以很好地拟合数据,从而减轻了观察结果和理论之间的张力。结论。可以通过增强柱沿积分柱的变化,多普勒增强的效果以及层次振动的效果,以及层次的红色速度的效果来解释,可解释了超临界吸积性方案中的弱抗相关性和X射线光度。 由于这些影响,中子恒星表面上的实际磁场可能比观察到的CRSF的天真推断值大约2个因子。可以通过增强柱沿积分柱的变化,多普勒增强的效果以及层次振动的效果,以及层次的红色速度的效果来解释,可解释了超临界吸积性方案中的弱抗相关性和X射线光度。由于这些影响,中子恒星表面上的实际磁场可能比观察到的CRSF的天真推断值大约2个因子。
摘要:在统计程序TALYS v1.96和质子中子准粒子随机相近似(pn-QRPA)模型框架内,研究了Mo同位素的中子俘获率和随温度变化的恒星β衰变率。在统计程序TA-LYS v1.96框架内,基于现象学核能级密度模型和γ强度函数,分析了Mo(n,γ)Mo辐射俘获过程的麦克斯韦平均截面(MACS)和中子俘获率。基于模型的MACS计算与现有测量数据相当。在pn-QRPA模型框架内,研究了恒星弱相互作用率对不同密度和温度的敏感性。特别关注了衰变核(Mo)中热填充激发态对电子发射和正电子俘获率的影响。此外,我们比较了中子俘获率和恒星β衰变率,发现无论在低温还是高温下,中子俘获率都高于恒星β衰变率。
历元 1991.25。位置是在历元 2000 和 2016 创建的。Hipparcos 在历元 1991.25 与 Gaia_PM 匹配,并在历元 2016 与 Gaia_noPM 独立匹配。两次交叉匹配均使用 4 弧秒半径。结果发现 Hipparcos 恒星与几颗 Gaia 恒星匹配,反之亦然。在这些情况下,只保留最接近的匹配,其他匹配被视为独立恒星。一些 Hipparcos 恒星与 Gaia_PM 和 Gaia_noPM 恒星都匹配。同样,通过比较各自时期的匹配距离,优先选择最接近的匹配。在未来版本的星表里,可能会考虑利用交叉匹配中的恒星星等信息。100 颗 Hipparcos 恒星无法与 Gaia 匹配。它们中的大多数对于 Gaia 来说太亮了(72 颗的 Hp < 5 星等)。剩余的 28 颗恒星(其中 5 颗 < Hp < 13.8)尚未得到彻底研究,但以下是它们在盖亚中缺失的一些可能性:
1. 所有恒星(包括太阳)都是由星云(由尘埃和气体组成)形成的 2. 引力使尘埃和气体盘旋在一起,形成原恒星 3. 引力能转化为热能,因此温度升高。当温度足够高时,氢原子核发生核聚变形成氦原子核,并放出大量的热和光。一颗恒星诞生了。 4. 最终氢开始耗尽。较重的元素由氦的核聚变制成。恒星从主序变成红巨星(如果是一颗小恒星)或红超巨星(如果是一颗大恒星)。表面温度下降,相对光度降低。