测量纳米级表面力的难点在于,要知道悬臂尖端在给定偏转下对样品的压力有多大。这需要知道悬臂的弹簧常数——它在力的作用下弯曲的程度。NPL 的解决方案是使用参考弹簧,可以将 AFM 的悬臂与它进行比较。直径为十分之一毫米的电容器具有下部固定板和上部板,上部板的作用类似于承载小重量的小弹簧。施加到其中一个板上的电流会导致这对板相对于固定板上下移动。通过测量板之间的泄漏电流并使用光学干涉仪监测位移,可以计算出弹簧常数,而无需了解电容器几何形状的细节。这将使 NPL 能够开发一项新服务,在泰丁顿提供光学校准,并使该技术在场外可用于校准 AFM 悬臂。
摘要:抗生素和抗真菌性抗性微生物的出现代表了当今的一个主要公共卫生问题,可能将人类推向抗生素/抗真菌时代。避免这种灾难的方法之一是提高快速的抗生素和抗真菌敏感性测试。在这项研究中,我们提出了一个紧凑的基于光纤的纳米动力传感器,通过监测与微生物生存能力相关的悬臂的动态纳米级振荡来实现此目标。实现了高检测灵敏度,这归因于弹性两光子聚合悬臂,弹簧常数为0.3 n/m。这种纳米动力装置在大肠杆菌和白色念珠菌的易感性测试中表现出色,并在几分钟的时间范围内快速响应。作为概念验证,具有简单的使用和并行化的潜力,我们的创新传感器预计将成为未来快速抗生素和抗真菌敏感性测试和其他生物医学应用的有趣候选者。关键字:光纤传感器,纳米动力设备,抗生素/抗真菌敏感性测试,两光子聚合
摘要:可见波长超大规模集成 (VLSI) 光子电路有可能在量子信息和传感技术中发挥重要作用。可扩展、高速、低损耗的光子网格电路的实现取决于可靠且精心设计的可见光子元件。本文我们报告了一种基于压电驱动机械悬臂的低压光学移相器,该移相器是在 CMOS 兼容的 200 毫米晶圆可见光子平台上制造的。我们展示了差分操作中 6 V π -cm 的线性相位和幅度调制、-1.5 dB 至 -2 dB 的插入损耗以及 700 nm - 780 nm 范围内高达 40 dB 的对比度。通过调整选定的悬臂参数,我们演示了一个低位移和一个高位移装置,两者均表现出从直流到峰值机械共振的几乎平坦的频率响应,分别在 23 MHz 和 6.8 MHz,通过共振增强 Q~40,进一步将工作电压降低至 0.15 V π -cm。
在本文中,我们提出了电磁驱动的微型管理器的计量和控制方法和技术。电磁驱动的悬臂属于微分辨率和质量变化调查的微分辨率机械系统(MEMS)。在所述的实验中,研究了具有综合洛伦兹电流环的硅悬臂。使用经过修改的光束偏转(OBD)系统对电磁驱动的悬臂进行了表征,其架构得到了优化,以提高其分辨率。使用参考悬臂校准OBD系统的灵敏度,其弹簧常数是通过热力学噪声分析进行了干预的。使用优化和校准的OBD系统用于产生电磁扭曲的悬臂的共振和双向静态差异。在理论分析和进一步的实验之后,可以获得等于5.28 mV/nm的设置灵敏度。关键字:光束旋转,热机械噪声,低频噪声,电磁驱动的悬臂,洛伦兹力。
在相对极端的动态条件下,对基于玻璃悬臂的原型表面形貌接触探针进行了评估,该探针采用电容式测微技术来检测位移。该探针主要用于测量亚微米表面结构的低接触力,扫描速度远低于 1 rom SI。通过将其建模为二阶系统,可以预测其在更高速度下的行为,但尖端和表面之间相互作用的复杂性使人们对如何使用此类模型产生了疑问。因此,使用高精度空气轴承台扫描尖端下方的镍复制正弦表面轮廓。这允许在超过 1 m S-1 的速度和高于探针固有频率(约 280 Hz)的轮廓信号频率下对行为进行实验验证。在所有测试条件下,报告的输出非常一致,频率响应平坦至 1 dB 以内,最高可达 250 Hz 左右。结论是,探针技术可以令人满意地用于比传统表面计量仪器更高的速度下的测量。
研究了工艺气体、激光扫描速度和样品厚度对激光粉末床熔合制备的 Ti-6Al-4V 中残余应力和孔隙率形成的影响。使用纯氩气和氦气以及它们的混合物(30% 氦气)来建立残余氧含量低至 100 ppm O 2 的工艺气氛。结果表明,通过 X 射线衍射测得的薄样品(220 MPa)的亚表面残余应力明显低于长方体样品(645 MPa)。这种差异归因于较短的激光矢量长度,导致热量积聚,从而实现原位应力释放。即使增加了扫描速度,在工艺气体中添加氦气也不会在简单的几何形状中引入额外的亚表面残余应力。最后,在氦气下构建的悬臂(从底板移除后)的偏转比在氩气和氩气-氦气混合物下制备的悬臂的偏转更大。该结果表明,由于氦气的高热导率、热容量和热扩散率,在氦气下制造涉及大面积扫描的复杂设计可能受到更高的残余应力。
原子在材料中的排列会影响材料的特性,例如硬度,导电性和不透明。了解原子的排列方式,尤其是在材料的表面上,对于学习材料为什么表现出某些特性至关重要。这不是一件小事,因为原子非常小。那么,我们如何实际“看到”它们?AFM可用于“感觉”物品在分子水平上的表面上的排列。AFM的悬臂在末端附有一个很小的针。针头拖过材料的表面,当针与原子接触时,它会导致悬臂向上弯曲。激光用于确定悬臂的弯曲程度,激光光的偏转程度指示了原子的高度。所得图像是材料表面的高度图,类似于地形图。这是科学家和工程师可以如何形象地看到分子或离子化合物中的原子在样品表面上的排列方式。AFMS允许科学家和工程师蚀刻硅的电子设备越来越小。他们还被用作科学家和工程师研究使数据存储更加有效的方法。
混合旋转机械设置为量子科学和技术提供了多功能平台,但是改善自旋光子以及此类系统的自旋旋转耦合仍然是一个至关重要的挑战。在这里,我们提出并分析了一种实验可行且简单的方法,用于指数增强在混合机械设置中仅使用线性资源(仅使用线性资源)在混合自旋机械设置中的旋转声和介导的自旋旋转相互作用。通过用时间依赖的泵调节机械悬臂的弹簧常数,我们可以将可调且非线性(两频)驱动器获取到机械模式,从而扩大机械零点的波动并直接增强自旋量耦合。此方法允许自旋机械系统从弱耦合方案驱动到强耦合方案,甚至是Ultrastrong耦合方案。在色散状态下,该方法产生了遥远固态旋转之间声子介导的自旋旋转相互作用的大大增强,通常比没有调节的大两个数量级。为例,我们表明,即使在存在大量耗散的情况下,提议的方案也可以应用于具有高保真度的多个旋转状态。
本文提出了两种沉积方法,用于生成具有PECVD反应器中“零”残留应力的SIN X层:高频模式下的混合频率和高功率(13.56 MHz)。传统上,混合频率模式通常用于产生低应力SIN X层,替代使用HF和LF模式。但是,由于LF模式的沉积速率较低,因此混合频率的组合沉积速率非常小,以产生同质的SIN X层。在第二种方法中,使用了高达600 W的高功率,也可能产生较低的残余应力(0-20 MPa),其沉积速率较高(250至350 nm/min)。较高的功率不仅会导致更高的气体解离速率,从而导致较高的沉积速率,而且在SIN X膜中带来了较高的n键,以及来自SIN X膜的较高体积膨胀的较高压缩应力,从而补偿了拉伸应力并产生低残余应力。此外,本文还研究了其他重要参数的影响,这些参数对残余应力和沉积速率有很大影响,例如反应剂气体流速和压力。通过使用最终优化的配方,基于低应激SIN X层成功制造了KOH和氮化硅悬臂的各向异性湿蚀刻层的掩蔽层。此外,还制造并测试了具有400nm孔的纳米孔膜。通过在纳米多孔膜顶部培养小鼠D1间充质干细胞,结果表明小鼠D1间充质干细胞能够生长良好。这表明纳米方膜可用作与活细胞接口的平台,成为生物分子分离的生物胶囊
评估者已验证2,3 N/A 41。高性能绝缘和燃烧性1.1绝缘符合国家评估者设计审查清单2.1中的规格。预岩+50-1.2所有隔热材料都可以达到I级安装。按ANSI / RESNET / ICC 301。< / div>脚注5。5,6前摇滚+50-1.3 Fenestration符合国家评估者设计评论清单2.1和2.2中的规格。 -2。完全对准的空气屏障7-在下面的每个隔热位置,提供了完全对齐的完整空气屏障,如下所示:天花板:在气候区域1-3中天花板绝缘的内部或外部水平表面;在气候区域4-8中天花板绝缘的内部水平表面上。此外,在所有气候区域中天花板绝缘的外部垂直表面上(例如,使用挡风玻璃延伸至每个海湾中的绝缘材料的整个隔热高度,或每个海湾中的桌面挡板,并带有防止在附近托架中进行风洗的拱腹通风口)。8,9 2.1掉落的天花板 /拱腹在无条件的阁楼以下和所有其他天花板之下。≤50平方米ft。壁:在所有气候区域的墙壁绝缘的外部垂直表面;同样在气候区域4-8中壁绝缘的内部垂直表面。9,10 2.2墙后面的阵雨,浴缸,楼梯和壁炉。≤50平方米ft。2.3阁楼膝盖墙和天窗轴墙。 11≤50平方米 ft。2.4墙壁与门廊屋顶或车库相邻。 ≤50平方米 ft。2.5双壁和所有其他外墙。 ≤50平方米 ≤50平方米ft。2.3阁楼膝盖墙和天窗轴墙。11≤50平方米ft。2.4墙壁与门廊屋顶或车库相邻。≤50平方米ft。2.5双壁和所有其他外墙。≤50平方米≤50平方米ft。-地板:在所有气候区域的地板隔热层的外部垂直表面,如果无条件的空间,也在内部水平表面,包括支撑,以确保对齐。脚注中的替代方案13和14。12、13、14 2.6地板上方的车库上方,地下室上方或爬行空间上方的地板以及悬臂的地板。ft。2.72.7其他无条件空间的所有其他楼层(例如,外墙或门廊屋顶的边缘 /带托梁)。 ≤50平方米 ft。3。 减少热桥 - 不是强制性的热桥接策略。 但是,必须根据ANSI / RESNET / ICC 301进行准确评估以下细节。< / div> 15ft。2.72.7其他无条件空间的所有其他楼层(例如,外墙或门廊屋顶的边缘 /带托梁)。≤50平方米ft。3。减少热桥 - 不是强制性的热桥接策略。但是,必须根据ANSI / RESNET / ICC 301进行准确评估以下细节。< / div>15