2021 年 8 月 8 日,美国国家点火装置 (NIF) 创纪录的实验从内爆氘氚 (DT) 胶囊中释放出 1.35MJ 的能量,显示出 0.7 的聚变增益和强劲燃烧的等离子体。虽然这些实验和 NIF 设施并非旨在开发惯性聚变能 (IFE) 的物理学和工程学,但结果对于 IFE 的氘氚惯性约束聚变 (ICF) 物理平台的风险评估具有变革性意义。开发基于 IFE 的发电厂仍是一项十年的努力,我们面前还有许多技术挑战。但有了这种可行性证明和无碳、地理位置独立的发电厂技术的前景,建立对所有高风险和长期发展支持技术的全面研发工作至关重要。要使 IFE 成为有吸引力的能源,需要开发可靠、经济高效的高功率半导体激光器,作为高能聚变驱动激光器经济和技术上可行的泵浦源。
美国所有主要终端使用领域的能源消费均稳步增长,其中电力和天然气增长最快。2017 年全球电力需求增长了 3.1%,其中中国和印度占增长的 70%。自 1950 年以来,美国的发电量增长了 13 倍,2018 年创下了 4% 的增长记录。尽管受新冠疫情影响导致能源需求减少(2019 年至 2020 年下降约 6%),但能源部门脱碳以及实现主权和不受天气影响的能源上网的需求从未如此迫切。惯性聚变能 (IFE) 提供了一种无碳能源的前景,其燃料供应几乎无限。与核裂变不同,聚变发电厂不会产生大量需要长期处置的高放射性核废料。劳伦斯利弗莫尔国家实验室的国家点火装置 (NIF) 最近取得突破,实现了 1.35 MJ 的聚变产量,超过点火所需增益的 70%,表明等离子体燃烧强劲。它将 ICF 和 DT 物理平台推向了聚变点火的门槛。美国的三项主要研究工作围绕驱动内爆和实现所需的高能量密度等离子体条件的三大能源展开:
在磁约束聚变 (MCF) 领域,氚燃料循环已得到详尽研究。[1,2,3] 已经开发出处理、监测、从化学结合物种中回收、浓缩和储存氚的技术,其产量接近反应堆相关产量。[4] 关键组件已在大型托卡马克或氚处理设施中进行了测试。[5] 该技术的很大一部分可转移到适用于惯性聚变能 (IFE) 的系统。然而,操作条件与磁性情况有很大不同,因此对 IFE 燃料循环组件施加了 MCF 情况下没有的条件,因此需要针对 IFE 特定主题进行研究。燃料回路由喷射器系统和用于回收反应堆流出物的基础设施组成。MCF 中的颗粒注入是一种将 DT 冰输送到托卡马克等离子体深处的有吸引力的方法。部署在 IFE 反应堆中的目标需要特定的设计来优化燃烧分数,该分数可能高达 1/3。这可能需要不同元素的复合层。湿泡沫等靶概念将由嵌入低密度 CH 泡沫中的液态 DT 组成,也很有前景。MCF 反应堆将在真空中运行,主要成分是氢同位素。一些 IFE 反应堆设计将在中等真空(几托)下运行,主要成分是氖或氙,以帮助缓和冲击波和对第一壁的粒子冲击。MCF 反应堆必须应对等离子体与偏滤器相互作用时产生的灰尘。IFE 反应堆需要将残留的靶碎片与流出物中的挥发性氢物种分离并去除。图 1 提供了 IFE 反应堆的通用燃料循环。作为代表性示例,该设计隐含了在薄壁塑料外壳内分层使用 DT 冰。泡沫填充的液态 DT 靶和更复杂的靶设计(例如采用空腔的靶设计)将需要更广泛的碎片收集和处理子系统(具体取决于细节)。燃料循环包括两个独立的回路:一个回路为反应堆提供燃料,另一个回路用于增殖氚。反应堆流出物被分离成两股:挥发性成分在气体离开反应堆时被低温抽吸,而颗粒碎片则通过重力送入收集器并氧化以将吸收的氢与碳物质分离。低温分离器将氦灰排放到环境中,将氖/氙转移以供再利用,并通过渗透器将氢同位素排放到同位素分离器。同位素分离器将氢排放到环境中,并将氘和氚引导到胶囊工厂和靶填充系统。增殖毯回路有两个主要功能:从反应堆中提取热量和增殖氚。反应堆周围是熔盐池,用于捕获和缓和聚变中子,作为氚增殖的前体。熔盐从反应堆泵出,通过热交换器、杂质去除子系统(用于净化熔盐)、氚提取模块,然后返回到反应堆周围的安全壳中。在 380 MWe IFE 反应堆中,主要物质的摩尔流速为:H、D、T、C、O、He 和 Xe,该反应堆使用封装在薄塑料壳中的 DT 冰靶。20 毫克氚靶以 0.5 Hz 的频率注入。燃烧分数假设为 25%。聚变功率转换为电能的比率假设为 30%。假设工厂占空比为 90%。
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
Figure 1.1 Stages of power system frequency response after a disturbance ........................................................ 19 Figure 1.2 Frequency response during 12 March 2014 event ............................................................................... 20 Figure 1.3 Frequency response during 23 April 2018 event .................................................................................. 21 Figure 1.4 Frequency response during 28 May 2020 event ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Frequency Drop .................................................................................................... 76 Figure 6.6 Power number during different grid events in India ............................................................................ 77 Figure 7.1 Flow chart for online inertia estimation ............................................................................................... 81 Figure 7.2 Online inertia monitoring in NRLDC EMS ............................................................................................. 82 Figure 7.3 Online inertia monitoring in WRLDC EMS ............................................................................................ 82 Figure 7.4 Online Kinetic energy monitoring in SRLDC EMS .................................................................................. 82 Figure 7.5 Online inertia monitoring in ERLDC EMS .............................................................................................. 82 Figure 7.6 Online inertia monitoring in NERLDC EMS ........................................................................................... 83 Figure 7.7 Online inertia monitoring for All India grid in NLDC EMS ..................................................................... 83 Figure 7.8 Sample daily kinetic energy curve for All Indian Grid ........................................................................... 84 Figure 7.9 Sample daily kinetic energy curve for NR ............................................................................................. 84
本论文由 AFIT Scholar 的学生研究生作品免费提供给您,供您开放访问。它已被 AFIT Scholar 的授权管理员接受纳入论文和学位论文。有关更多信息,请联系 richard.mansfield@afit.edu。
生成风能:风发电设施通过捕获风能,用两到三个螺旋桨像转子上的刀片一样运行,以发电。随着风吹,刀片下风的低压空气形式的口袋。此低压空气然后将刀片拉向刀片,形成升降机并转动转子。升降机的力比阻力或风的力强大。升降机和阻力的组合使转子旋转,从而使轴旋转发电机以产生电力。
1 CAS量子信息信息实验室,中国科学技术大学,Hefei 230026,中华人民共和国2 CAS量子信息与量子物理学卓越卓越中心,中国科学技术大学,230026,Hefei 230026,中国人民共和国3,化学研究所3,耶路撒冷大学,耶路撒大学,耶路撒大学。加利福尼亚大学的物理学,圣塔芭芭拉,加利福尼亚州93106,美利坚合众国5菲西卡学院gal。Milton Tavares de Souza s/n,Gragoatá,24210-346 Niter´Oi,Rio de Janeiro,巴西,巴西6 DepratimentodeFísica,联邦联邦政府De s〜ao Carlos,Rodovia WashingtonLuís,spsp-sp-35-sp-sp-310,135565-955-9565-95-95-95-95-95-95-95-95-95-95-95-95-95-95-95-905-905-905-905 SO.任何信件应被解决。7这些作者对这项工作也同样贡献。
新闻稿2021年9月13日EURISA:为太空应用开发第一个紧凑型和具有成本效益的欧洲惯性测量单位(IMU),旨在开发欧洲紧凑,表现和成本效益的IMU,以确保欧洲对欧洲的非依赖性,以确保欧洲对空间的关键设备。由欧盟委员会作为Horizon H2020计划的一部分资助,3.3 M€项目汇集了4位欧洲太空生态系统的主要参与者 - 空中客车防御和太空,Eth Zurich,Eth Zurich,German Aerospace Center(DLR)和Ixblue - 并将运行3.5岁。截至今天,欧洲在紧凑,高性能和具有成本效益的IMU上没有其他选择,因此,许多欧盟太空任务取决于非欧洲的惯性测量单位(IMU),并依靠外国伙伴的商誉来采购这些关键组成部分。Eurisa的主要目的是提供IMU,其中包括登陆,漫游车导航和行星际巡航等任务的TRL的精心设计杂交算法。由ixblue领导的项目是建立在4个合作伙伴的广泛专业知识上的:参与诸如Insight和Lisa for Eth Zurich的主要太空任务; Callisto和Eagle项目的DLR和ixblue和空中客车防御和空间的Actrix陀螺仪系列。除了这个专有技术之外,将定制和组装不同合作伙伴的技术砖,以使未来的欧洲IMU在2024年准备就绪。Guillaume Lecamp指出:“基于过去和当前的发展以及使用资格有空的COTS电子产品,我们确保了具有成本效益的产品,并且是通往TRL 6成熟的安全途径。的确,合作伙伴会在该项目中获得强大而互补的能力,以取得成功:太空电子,惯性传感器,有关太空任务要求的知识,杂交算法,太空环境以及制造和质量。,由于项目合作伙伴的欧洲制造商和IMU的所有关键组成部分,Eurisa将为欧洲的独立性和空间中的主权做出贡献,以供未来的任务和探索。
摘要:为了应对可再生能源渗透的技术挑战,本文重点研究了在负载和发电意外事件发生后,混合可再生能源综合电力系统中电网电压和频率响应的改善。提出了一种综合方法,利用电池储能系统 (BESS) 通过下垂型控制来调节电压,通过同化惯性模拟 (IE) 和下垂型控制来调节频率。此外,提出了一种新颖的频率相关充电状态 (SOC) 恢复 (FDSR),以在 FDSR 约束内调节 BESS 功耗,并在需要时在空闲期间为电池充电。所提出的 BESS 控制器的有效性在 IEEE-9 总线系统中得到证明,该系统具有 22.5% 的光伏 (PV) 和风能渗透水平。获得的仿真结果表明,所提出的控制器在调节电压和频率的同时性能令人满意,频率变化率较低,频率最低点更好。此外,与传统方法相比,所提出的 FDSR 在 SOC 恢复时表现出优势。