化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
i,Kobi P. Bermingham,证明本文所做的工作是我的原始工作,并且尚未随时在Maynooth University或任何其他机构提交。我还证明,它尚未从出版的书,照片,杂志或其他人中复制。
合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
3( *34co𝑃𝑃𝑃𝑃𝑃𝑃↑注意4fotjoh efwjdf uibu efufdu up pckfdu up pckfdu jo b wbsjfuz pg tjuvbujpot cz ijhi sftpmvujpo tufsfpo tufsfp tufsfp dbnfs dbnfs dbnfs dbnfs dbnfsb xjui 3(
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
美国国家航空航天局和美国国防部正在实施支持“智能”飞机发动机未来愿景的项目,以提高飞机推进系统的可负担性、性能、可操作性、安全性和可修复性。智能发动机将具有先进的控制和健康管理功能,使这些发动机能够自我诊断、自我预测和自适应,以根据发动机的当前状况或车辆的当前任务优化性能。传感器是实现智能发动机愿景所必需的关键技术,因为它们依赖于准确收集发动机控制和健康管理所需的数据。本文从控制和健康管理的角度回顾了支持智能发动机未来愿景的预期传感器要求。推进控制和健康管理技术在主动组件控制、推进健康管理和分布式控制等广泛领域进行了讨论。在这三个领域中,我们将描述单个技术,讨论控制反馈或健康管理所需的输入参数,并总结用于测量这些参数的传感器性能规格。
摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
