脑电图(EEG)是一种广泛认识的非侵入性方法,用于囊化脑生理活性。在大多数医院环境中,它的成本效益,可移植性,易移,管理便利性和广泛可用性而脱颖而出。与其他关注解剖结构(例如MRI,CT和fMRI)的神经影像模式不同,EEG擅长提供超高的时间分辨率,这是对脑功能的深入了解的重要资产[1]。脑电图数据的经验解释主要依赖于不同生物学状态(例如,觉醒与睡眠[2])和阵发性和形态学特征[3]的鉴定(例如,觉醒与睡眠[2])以及常见的放电[4]。对外部刺激和激活程序的反应性,例如间歇性的光刺激或过度换气,在EEG分析中也起着显着的作用[5,6]。尽管这些实际方法在许多情况下很有价值,但它们通常没有捕获大脑网络各种解剖成分之间的复杂,动态和非线性相互作用。这些相互作用经常隐藏在脑电图记录中,超过了训练有素的医生的观察能力。这种监督得到了各种神经疾病的大量证据的支持,包括癫痫,神经退行性痴呆症,神经精神病学和运动障碍以及正常的认知范式[7]。此外,脑电图数据本质上是非平稳的,并且易受噪声来源的敏感,尤其是频率干扰。因此,从原始脑电图数据中有效删除噪声是要提取有意义的信息,以准确反映大脑活动和状态[8]。近年来,基于机器学习的方法吸引了相当大的关注,因为它们在嘈杂的脑电图记录中针对各种应用程序揭示了基本模式的特殊能力。本期特刊是传播EEG信号预处理,建模,分析及其应用中原始高质量研究的平台,特别关注机器学习和深度学习技术的利用。所涵盖的申请范围包括以下内容:•医疗保健申请,包括癫痫(贡献1-3)和麻醉(贡献4); •与情感有关的研究(贡献5-7); •运动图像研究(贡献8-10); •研究外部刺激(贡献11-13); •有关心理工作量的研究(贡献14-15); •满意度的研究(贡献16)。
主要关键词