● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
脑电图(EEG)是一种广泛认识的非侵入性方法,用于囊化脑生理活性。在大多数医院环境中,它的成本效益,可移植性,易移,管理便利性和广泛可用性而脱颖而出。与其他关注解剖结构(例如MRI,CT和fMRI)的神经影像模式不同,EEG擅长提供超高的时间分辨率,这是对脑功能的深入了解的重要资产[1]。脑电图数据的经验解释主要依赖于不同生物学状态(例如,觉醒与睡眠[2])和阵发性和形态学特征[3]的鉴定(例如,觉醒与睡眠[2])以及常见的放电[4]。对外部刺激和激活程序的反应性,例如间歇性的光刺激或过度换气,在EEG分析中也起着显着的作用[5,6]。尽管这些实际方法在许多情况下很有价值,但它们通常没有捕获大脑网络各种解剖成分之间的复杂,动态和非线性相互作用。这些相互作用经常隐藏在脑电图记录中,超过了训练有素的医生的观察能力。这种监督得到了各种神经疾病的大量证据的支持,包括癫痫,神经退行性痴呆症,神经精神病学和运动障碍以及正常的认知范式[7]。此外,脑电图数据本质上是非平稳的,并且易受噪声来源的敏感,尤其是频率干扰。因此,从原始脑电图数据中有效删除噪声是要提取有意义的信息,以准确反映大脑活动和状态[8]。近年来,基于机器学习的方法吸引了相当大的关注,因为它们在嘈杂的脑电图记录中针对各种应用程序揭示了基本模式的特殊能力。本期特刊是传播EEG信号预处理,建模,分析及其应用中原始高质量研究的平台,特别关注机器学习和深度学习技术的利用。所涵盖的申请范围包括以下内容:•医疗保健申请,包括癫痫(贡献1-3)和麻醉(贡献4); •与情感有关的研究(贡献5-7); •运动图像研究(贡献8-10); •研究外部刺激(贡献11-13); •有关心理工作量的研究(贡献14-15); •满意度的研究(贡献16)。
3( *34co𝑃𝑃𝑃𝑃𝑃𝑃↑注意4fotjoh efwjdf uibu efufdu up pckfdu up pckfdu jo b wbsjfuz pg tjuvbujpot cz ijhi sftpmvujpo tufsfpo tufsfp tufsfp dbnfs dbnfs dbnfs dbnfs dbnfsb xjui 3(
合成微生物群落(Syncom)生物传感器是一种有前途的技术,用于检测和响应环境线索和靶分子。Syncom生物传感器使用工程的微生物来创建一个更复杂和多样化的传感系统,从而使它们能够以增强的灵敏度和准确性对刺激做出反应。在这里,我们给出了Syncom生物传感器的定义,超越了他们的建筑工作,并讨论了当前的生物传感技术。我们还强调了开发和优化Syncom生物传感器以及在农业和食品经营中的潜在应用,生物治疗发展,家庭感应,城市和环境监测以及One Health Foundation的挑战和未来。我们认为,Syncom生物传感器可以实时和遥控的方式使用,以感知不断动态的环境的混乱。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
随着抗生素耐药性不断上升到危险水平,我们面临失去抗生素效力的风险。新开发的药物失效速度比过去几十年快得多,而我们新发明的速度却令人担忧地落后。这一瓶颈迫使我们重新评估关于如何使用现有抗生素的战斗策略。治疗药物监测 (TDM) 是一种临床实践,用于测量血液或血浆中或可与血液药物水平相关的其他生物体液中的药物浓度。抗生素治疗的成功在很大程度上取决于能否将抗生素浓度保持在治疗范围内,以适应患者独特的药代动力学/药效动力学 (PK/PD)。然而,在目前的实践中,这个操作窗口是根据数据确定的
ICASSCT 2024 会议的主要目标是推动传感器、信号处理和通信领域各方面的创新。会议遵循广泛的盲审流程,选出最佳论文进行演讲,其中包括专门为推进技术、系统和基础设施而设计的技术论文、教程、研讨会和行业会议。会议旨在从通信和信息理论到使用信号处理技术实现、评估和改进实际通信系统的性能。
美国国家航空航天局和美国国防部正在实施支持“智能”飞机发动机未来愿景的项目,以提高飞机推进系统的可负担性、性能、可操作性、安全性和可修复性。智能发动机将具有先进的控制和健康管理功能,使这些发动机能够自我诊断、自我预测和自适应,以根据发动机的当前状况或车辆的当前任务优化性能。传感器是实现智能发动机愿景所必需的关键技术,因为它们依赖于准确收集发动机控制和健康管理所需的数据。本文从控制和健康管理的角度回顾了支持智能发动机未来愿景的预期传感器要求。推进控制和健康管理技术在主动组件控制、推进健康管理和分布式控制等广泛领域进行了讨论。在这三个领域中,我们将描述单个技术,讨论控制反馈或健康管理所需的输入参数,并总结用于测量这些参数的传感器性能规格。
