树突状细胞(DC)通过识别通过模式识别受体(PRRS)识别保守的病原体相关分子模式(PAMP)和损伤相关的分子模式(PAM)(PRR),参与针对恶性细胞的免疫反应的引发和维持。根据最近的研究,肿瘤细胞衍生的DNA分子起作用,并由DCS中的DNA传感器识别。一旦通过DC中的传感器识别,这些DNA分子会触发多个信号级联反应,以促进各种细胞因子分泌,包括I型IFN,然后诱导DCS介导的抗肿瘤免疫。作为癌症治疗的潜在有吸引力的策略之一,针对DNA传感器的各种激动剂进行了广泛的探索,包括与其他癌症免疫疗法的组合或直接使用作为癌症疫苗的主要成分。此外,这篇评论突出了肿瘤衍生的DNA引发DCS激活的不同机制以及肿瘤微环境调节DCS的DNA感应以促进肿瘤免疫逃生的机制。还讨论了肿瘤疗法中化学疗法,放疗和检查点抑制剂对DC的DNA感应的贡献。最后,总结了利用靶向激动剂的DNA传感器的肿瘤疗法的最新临床进展。的确,在DC中更多地了解DNA感应将有助于更多地了解肿瘤免疫疗法,并提高癌症中DC靶向治疗的有效性。
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月6日。; https://doi.org/10.1101/2024.04.04.04.05.588317 doi:biorxiv Preprint
摘要 本文介绍了一种基于微波的方法,旨在非侵入性地测量人脑中的水,特别是脑脊液 (CSF) 动态。微波测量技术在工业应用中广为人知。最近,微波技术也引起了生物医学应用的兴趣。这是首次提出将其用于测量脑水,特别是 CSF。为了验证该技术对感知人类头骨内 CSF 和水量的动态变化的灵敏度,我们构建了两个不同的头部模型。它们由多层头部模型组成,包括一个真实的人类头骨,模仿人类头部的电磁特性。此外,使用平面层模型和半球层模型的电磁模拟来评估 CSF 的变化。此外,使用 2D 功率流表示来评估头部模型内的传播和功率流。选择反射传感器原理是因为它简单且能够测量相对较厚的样品。重要的是,反射传感器仅需要单端口测量,这使得它非常适合体内脑监测。此外,测量装置不需要将传感器连接到头部,因此无需接触头部即可进行测量。我们的实验研究以及模拟结果证明了通过微波非侵入性地感知大脑中脑脊液体积的微小动态变化的可能性,特别是在蛛网膜下腔中。
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 本研究的目的工作和论文组织 25 第 2 章 材料、实验设置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验的匝间样本 31 2.2.4 接地壁测试样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验设置 43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
3传感来自正交测量值10 3.1位移感测,并通过正交测量值传感。。。。。。。。。。。。10 3.1.1 fock状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 3.1.2相干状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 3.1.3高斯州。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 3.1.4猫状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 3.1.5 Fock状态叠加。。。。。。。。。。。。。。。。。。。。。。。。18 3.1.6结果摘要。。。。。。。。。。。。。。。。。。。。。。。。。19 3.2旋转传感,并进行正交测量。。。。。。。。。。。。。。。20 3.2.1 fock状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 3.2.2相干状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 3.2.3高斯州。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 3.2.4猫状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.2.5结果摘要。。。。。。。。。。。。。。。。。。。。。。。。。24
广泛地用于实现受到生活系统行为及其对各种物理和化学刺激的反应能力的启发,包括电荷和偶极子,压力,温度,湿度和磁场。[5-17]这些机械主动的结构通常设计为在预定义的参数范围内工作,在其外部可能无法根据需要做出响应。赋予合成折纸系统具有检测环境条件及其自己的状态模仿性质,实现反馈控制并增强其适应环境变化的能力的能力。需要机械的软传感器,以适应动作过程中的运动和变形才能有效与折纸进行整合。软执行器的标准方法已集中在基于商业电子和气动系统[18]的刚性设计上,或者是带有刺激响应材料的小规模平台。[19]前者太笨重了,无法复制生物系统中发现的无缝且温和的折叠模式,而后者缺乏传感器,因此反馈控制以积极指导其运动。实现柔软,功能性和薄折纸致动器需要在这两种方法之间进行合成,这可以通过使用电子皮(E-Skins),复合膜或水凝胶来介导。最近的工作通过证明本质上柔韧的应变[20,21]曲率,[22,23]和光学[24]传感器整合到软致动器中,从而实现了该协同作用的一些步骤。然而,这些示例集中在由没有多个折叠的单层材料制成的执行器上,因此不需要折纸时的组装过程中的运动跟踪。可以通过将磁敏感的e胶粘在软磁性执行器上,检测到各种襟翼或褶皱的位置和方向,从而检测出外部或固有或固有的(由执行器)磁场产生。专门用于磁性软执行器或磁性软机器人[1,25-29],该机器人是由带有嵌入式磁性颗粒的聚合物复合材料构建的,磁化状态的变化会极大地影响致动。[24,25,30–35]当磁性特性的这种变化是有目的的和骗局的时,它们对于允许以新的方式做出相同的结构非常有益。杂志执行器对施加磁场的响应是复合材料的磁化状态的特征,这对用于磁化的过程既敏感又敏感。
摘要人类干细胞提供了用于药物筛查,疾病建模和个性化患者的新兴方法。为了满足对扩大规模的不断增长的需求,必须使用连续监测技术和自动反馈来简化干细胞制造方法,以优化高生产和一致性的增长条件。标记 - 自由光学成像和传感,包括多光子术,拉曼光谱以及相似的光学显微镜等低成本方法,可以在整个细胞分化和成熟度中提供快速,可重复和非侵入性监测干细胞。在无标签的光学成像和传感功能上训练的机器学习算法可以识别可行的细胞并预测最佳的制造条件。这些技术有可能简化干细胞生产并加速其在再生医学中的使用。
基于电流模型和电压模型的传统感应电机转子磁通观测器对参数不确定性很敏感。本文提出了一种基于前馈神经网络的非参数感应电机转子磁通估计器。该估计器无需电机参数即可运行,因此不受参数不确定性的影响。该模型采用 Levenberg-Marquardt 算法离线训练。所有数据收集、训练和测试过程均在 MATLAB/Simulink 环境中完成。训练过程中强制迭代 1,000 个时期。此建模过程总共使用了 603,968 个数据集。该四输入两输出神经网络模型能够为磁场定向控制系统提供转子磁通估计,其误差为 3.41e-9 mse,训练时间为 28 分 49 秒。该模型在参考速度阶跃响应和参数不确定性下进行了测试。结果表明,所提出的估计器改进了电压模型和电流模型转子磁通观测器的参数不确定性。