1 瑞士圣加仑州立医院,传染病和医院流行病学分部;2 瑞士东部儿童医院,传染病和医院流行病学部,瑞士圣加仑;3 瑞士库尔格劳宾登州立医院,传染病分部;4 瑞士圣加仑州(南部)精神病服务中心;5 瑞士圣加仑州(北部)精神病服务中心;6 Clienia Littenheid,瑞士利滕海德;7 瑞士齐尔施拉赫特神经康复中心;8 瑞士格拉布斯 Rheintal Werdenberg Sarganserland 医院集团;9 瑞士维尔 Fuerstenland Toggenburg 医院集团;10 瑞士苏黎世 Hirslanden 诊所; 11 瑞士明斯特林根图尔高医院集团传染病和医院流行病学部;12 瑞士国家感染预防中心 (Swissnoso),瑞士伯尔尼;13 瑞士圣加仑老年诊所,瑞士圣加仑;14 加拿大多伦多西奈医疗系统;15 瑞士布克斯 Labormedizinisches Zentrum Dr Risch Ostschweiz AG;16 列支敦士登私立大学,特里森, ———————————————————————————————————————————— *SPK 和 PK 对本文的贡献相同。 **研究组团队成员列于致谢部分 通讯作者。 Philipp Kohler,医学博士,理学硕士,圣加仑州立医院,传染病和医院流行病学科,Rorschacherstrasse 95,9007 St. Gallen,瑞士,电子邮件 philipp.kohler@kssg.ch © 作者 2023。由牛津大学出版社代表美国传染病学会出版。这是一篇开放获取文章,根据知识共享署名-非商业-禁止演绎许可条款分发(https://creativecommons.org/licenses/by-nc-nd/4.0/),允许以任何媒介非商业性复制和分发作品,前提是原始作品未以任何方式更改或转换,并且正确引用作品。如需商业再利用,请联系 journals.permissions@oup.com
抽象的幽门螺杆菌是最常见的人类病原体之一,可能引起胃肠道(GI)疾病,包括简单的胃炎,胃溃疡和恶性胃炎。在某些情况下,例如免疫缺陷和潜在疾病,它可能是机会性感染。糖尿病(2型)(T2DM)是幽门螺杆菌的潜在疾病之一。由于在糖尿病患者中观察到胃肠道问题,因此有必要治疗幽门螺杆菌感染。在这篇综述中,我们的目的是根据流行病学调查评估幽门螺杆菌和T2DM之间的可能关系,该研究从数据库中检索出的70项研究,包括Scopus,PubMed和Google Scholar,介绍了H. Pylori和T2DM之间的关系,并讨论了此相关性的背景机制。根据我们的研究结果,不同的研究表明,幽门螺杆菌在2型糖尿病患者中比健康的个体或非糖尿病患者更为普遍。原因是幽门螺杆菌感染引起的炎症和炎症细胞因子的产生以及该细菌与糖尿病有关的细菌的不同激素失衡。通过追踪糖尿病患者的抗幽门螺杆菌抗体,以及> 75%患者的消化问题等症状的发生,可以得出结论,该细菌和T2DM之间存在关系。考虑到证据,至关重要的是,在T2DM患者中评估幽门螺杆菌感染的可能性,以使患者的医疗过程受到更高的谨慎态度。
结果:使用血液作为MNGS测试样品,宿主DNA的比例为99.9%,只有三种细菌,未检测到真菌。在MNG中使用血浆时,宿主DNA的比例约为97%,检测到84个细菌和两种真菌。值得注意的是,分别在43对血液和血浆样品中检测到16S rRNA NGS。血液培养物检测到49种细菌(23个革兰氏阴茎和26克阳性球菌)和4种真菌,其中14种细菌被临床微生物学家视为污染物。对于所有血液培养物,血浆CFDNA MNG检测到78.26%(19/23)革兰氏阴性杆,17%(2/12)革兰氏阳性球菌,没有真菌。与血液培养物相比,血浆CFDNA MNG的敏感性和特异性检测细菌和真菌分别为62.07%和57.14%。
媒体联系人:Gina Kirchweger gina@lji.org 848.357.7481即时释放T细胞,T细胞上升以与肠道科学家的感染作斗争,展示了一个特殊的T细胞如何通过小肠里漫游,以打击ca la jolla,ca -your ut ut ut ut ut ut ut。围绕小肠排列的细胞必须平衡两个看似矛盾的工作:吸收食物中的营养,同时保持警惕的病原体试图入侵您的身体。“这是病原体可以潜入的表面,” La Jolla免疫学研究所(LJI)助理教授Miguel Reina-Campos博士说。 “对于免疫系统来说,这是一个巨大的挑战。”那么,免疫细胞如何确保肠道安全?由LJI,加州大学圣地亚哥分校的科学家领导的新研究和艾伦免疫学研究所表明,抗原病原体的免疫细胞称为组织居民记忆CD8 T细胞(T RM细胞)经历了令人惊讶的转化,并恢复了小肠中的感染。实际上,这些细胞实际上在组织中上升较高,以在病原体传播到更深,更脆弱的地区之前对抗感染。“肠道中的组织已经发展为为免疫细胞浸润提供信号 - 将免疫细胞放置在特定的地方,因此它们具有更好的阻止病原体的能力,” Reina-Campos说,他与联合首先研究的新自然研究的第一作者和UC Sanivo和UC Sanivo的Alexander Monell一起担任了新自然研究的第一作者,并获得了UC Sanivo和联合Aneror Author Author Authorian Authorian Anegianian Heeg,M.Div。 和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。 新发现增加了免疫细胞适应特定组织的越来越多的证据体。和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。新发现增加了免疫细胞适应特定组织的越来越多的证据体。Reina-campos认为这些“组织居住”的免疫细胞可能是未来癌症的特定器官肿瘤的关键参与者。
本专业版块的宗旨是为读者提供最高质量的文章,这些文章涉及细菌致病机制和毒力、感染免疫力和疫苗等相互关联的主题。我们的精神在本版块开头的专业大挑战概述中得到了简洁的表达( Christodoulides,2022 年)。研究主题包括来自编辑委员会成员的广泛文章,重点关注导致人类疾病的重要革兰氏阳性和革兰氏阴性细菌病原体,即嗜肺军团菌、假鼻疽伯克霍尔德菌、葡萄球菌属、鼠疫耶尔森菌、铜绿假单胞菌和淋病奈瑟菌。铜绿假单胞菌是一种代谢灵活的革兰氏阴性菌,是引起院内感染的主要机会性病原体(Dolan,2020),由于全球卡巴培南类抗生素耐药性增加,世界卫生组织将其列为开发和引进新抗菌药物和疫苗的“高优先级”菌(World Health Orgainisation,2024)。铜绿假单胞菌是一种强大的细菌,可表达多种毒力因子、类型分泌系统、群体感应途径和胞外多糖,以及核心耐药机制,如药物渗透屏障、染色体编码的 AmpC 酶和六个多药流出泵超家族(Miller and Arias,2024)。流出泵在铜绿假单胞菌感染的发病机制以及对治疗和清除的抵抗中起着重要作用。在他们的小型评论中,Fernandes 和 Jorth 讨论了铜绿假单胞菌流出泵在毒力调节中具有争议和对立的作用。流出泵的主要功能是从细菌细胞中排出抗生素,尽管有证据表明这些泵可能具有影响铜绿假单胞菌毒力的其他功能。流出泵是公认的治疗干预目标(Fernandes 和 Jorth),也是疫苗开发的潜在抗原(Silva 等人,2024 年)。作者得出结论,在抗生素耐药性和细菌致病机制的背景下,针对流出泵可能会产生意想不到的后果,在开发治疗方法时必须考虑到这些后果。疫苗研究的代表论文是关于革兰氏阴性菌鼠疫耶尔森菌和淋病奈瑟菌。鼠疫耶尔森菌是一种自有记载以来就一直困扰着人类的细菌。它对公众健康构成重大风险,并且可能
包括 IL-25、IL-33 和胸腺基质淋巴细胞生成素 (TSLP) 在内的警报素细胞因子可作为危险信号触发宿主免疫,以应对寄生虫感染等致病因素引起的组织损伤。寄生虫病也为研究其功能和机制提供了极好的背景。许多研究表明,非免疫细胞(如上皮细胞和基质细胞)释放的警报素细胞因子会诱导宿主启动 2 型免疫,从而驱除寄生虫,但也会导致宿主病理,如组织损伤和纤维化。相比之下,来自免疫细胞(如树突状细胞)的警报素细胞因子(尤其是 IL-33)可能会引发免疫抑制环境,从而促进宿主对寄生虫的耐受性。此外,据报道,警报素细胞因子在寄生虫感染中的作用取决于寄生虫种类、警报素细胞因子的细胞来源和免疫微环境,所有这些都与寄生部位或器官有关。本叙述性综述旨在提供有关警报素细胞因子在涉及不同器官(包括肠、肺、肝和脑)的寄生虫感染中的关键和多样化作用的信息。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
在无脊椎动物中,免疫启动是个体根据先前的免疫学经验增强其免疫反应的能力。由于宿主自然栖息地中寄生虫反复感染的风险,这种适应性的免疫力可能会演变。免疫启动的表达在宿主和病原体种类以及感染途径(口腔或伤口)之间各不相同,反映了最终调节的进化调整。粉虫甲虫(Tenebrio molitor)的证据表明,革兰氏阳性细菌病原体在全身感染后的免疫启动中起着重要作用。尽管天然细菌病原体在T. molitor中可能会口服感染,但仍在争论是否摄入受污染的食物会导致全身感染,以及目前未知口服免疫启动。我们首先试图通过将其暴露于被活或死革兰氏阳性和革兰氏阴性细菌病原体污染的食物中,以诱导t. molitor幼虫和成年人的免疫启动。我们发现,口腔摄入活细菌没有杀死它们,但是化粪池的伤口导致死亡率迅速。有趣的是,死亡或活细菌的消耗不能防止再感染,与受伤引起的启动形成对比。我们进一步研究了用各种活细菌病原体感染食物对幼虫中食物消耗,质量增益和粪便产量等变量的影响。这表明革兰氏阳性细菌的口腔污染诱导了行为反应和蠕动防御机制,即使此处未观察到免疫启动。我们发现,与用革兰氏阴性细菌或对照食物暴露于受污染的食物相比,在食物中暴露于革兰氏阳性细菌的幼虫减少了质量和/或产生更多的粪便。考虑到口腔感染既没有引起昆虫死亡,也没有引起启动引起启动,因此我们认为T. molitor中的免疫启动可能主要是作为对与伤口相关的感染风险而不是口腔摄入而不是口腔摄入的反应。
保护相关性 (CoP) 是预测对传染病的一定程度保护的生物学参数。完善的保护相关性有助于疫苗的开发和许可,因为它可以评估保护效果,而无需让临床试验参与者接触疫苗旨在保护的传染源。尽管病毒具有许多共同的特征,但保护相关性在同一个病毒家族中,甚至在同一个病毒中,根据所考虑的感染阶段,可能会有很大差异。此外,感染过程中相互作用的各种免疫细胞群之间的复杂相互作用以及某些病原体的高度遗传变异,使得识别免疫保护相关性变得困难。一些对公共卫生影响重大的新出现和重新出现的病毒,如 SARS-CoV-2、尼帕病毒 (NiV) 和埃博拉病毒 (EBOV),在识别 CoP 方面尤其具有挑战性,因为这些病原体已被证明会在感染期间使免疫反应失调。尽管已证明病毒中和抗体和多功能 T 细胞反应与针对 SARS-CoV-2、EBOV 和 NiV 的一定程度的保护相关,但免疫的其他效应机制在塑造针对这些病原体的免疫反应方面发挥着重要作用,而这些免疫反应反过来可能成为保护的替代相关因素。本综述描述了在 SARS-CoV-2、EBOV 和 NiV 感染期间激活的适应性和先天性免疫系统的不同组成部分,这些组成部分可能有助于保护和清除病毒。总体而言,我们重点介绍了与人类针对这些病原体的保护相关的免疫特征,这些特征可以用作 CoP。
