• Modi – 可随身携带的下车电子对抗 (ECM) 防护装置,可抵御 EH • AN/PLT-4 – 局部现场事件 ECM 防护装置,可抵御 EH。AN/PLT-4A 升级将于 2024 财年第四季度推出 • CMD-CIED – 埋地简易爆炸装置 (IED) 和 EO 检测 • SRV 3X X 射线成像仪,带 XR150 X 射线发生器 – 下车 X 射线成像能力,可诊断 EO 和潜在 EH • MX908 – 追踪爆炸物、化学品和药物检测,以处理和清除秘密实验室。 • 陆军 EOD 电源管理系统 (AEPMS) – 从多个来源收集电力,为 ETEK 组件供电和充电 • BNVD-1531 – 双目夜视仪,用于在弱光条件下进行 EH 检测和识别 • RadEye SPRD-GN – 个人伽马和中子辐射探测器,用于检测和识别放射性威胁 • 轻型爆破装置 – 用于 EOD 工具和爆破的电击管引爆器 • 无人机系统 – 即将推出
利用Optiscan和明尼苏达州的Uni的优势,合作研究协议将结合Optiscan的创新技术和实时的体内成像能力,以及明尼苏达大学兽医医学及其学院的广泛研究能力,兽医设施和专业知识。该协议将汇集两个组织的专家,以开发特定于兽医的临床应用,并为Optiscan的数字共聚焦激光内分裂成像系统开发特定的临床应用,并最初侧重于伴侣动物的癌症研究。计划的研究和测试将提供来自美国FDA清除Optiscan成像平台所需的临床研究数据,以用于兽医医学。谅解备忘录与Optiscan的既定策略相吻合,该策略是为其独特的医学成像平台扩展可寻址市场 - 既包括医学领域,又在司法管辖区的数量中增加。兽医医学代表着这样一个可寻址的市场,拥有超过7,000万只驯养的狗和
现代成像技术与人工智能的结合已在医学诊断领域取得了重大进展。本研究的目的是更好地了解如何使用 MRI 生物标志物和机器学习算法来增强癌症诊断和预后。这项研究很重要,因为它试图解决现有方法的缺点,并提供一种更复杂、更精确的方法来理解和预测一个人的癌症发展轨迹 [1-3]。诊断癌症的传统方法通常严重依赖组织学检查和传统成像技术。然而,这些技术可能不如早期识别和预后评估所需的准确度。磁共振成像 (MRI) 因其高分辨率成像能力而越来越受欢迎,成为一种识别组织内微小异常的潜在技术。此外,由于机器学习算法经常在庞大的数据集中发现复杂的模式,因此它们提供了一种提高诊断准确性的方法 [4, 5]。
摘要:大脑细胞网络的信息处理能力取决于神经元及其分子和功能特征之间的物理布线模式。映射神经元并解决其单个突触连接可以通过在纳米级分辨率下以密集的细胞标记在纳米级分辨率下实现。光学显微镜独特地定位于可视化特定的分子,但是由于分辨率,对比度和体积成像能力的限制,光学显微镜的密集,突触级的电路重建已经无法触及。在这里,我们开发了基于光微镜的连接组学(LICONN)。我们将专门设计的水凝胶嵌入和扩展与基于深度学习的分割和连通性分析进行了整合,从而将分子信息直接纳入突触级脑组织重建中。liconn将允许以易于采用的方式在生物学实验中进行突触级的脑组织表型。
量子成像对经典成像具有潜在的好处,但面临着诸如信噪比差,可分离的像素计数,难以成像生物生物体的难度以及无法量化完整的双重双向特性等挑战。在这里,我们使用空间和极化的光子对来克服这些挑战,从而通过纠缠(ICE)从纠缠(ICE)中巧合引入量子成像。带有空间纠缠,ICE提供了更高的信噪比,更大的可分离像素计数以及图像生物生物体的能力。具有极化纠缠,ICE提供了定量的量子双折射成像能力,其中可以远程和即时量化一个物体的相位障碍和主要折射率轴轴角,而无需更改入射在物体上的光子的极化状态。此外,冰比经典成像造成的杂散光的抑制作用大25倍。冰有潜力为在生命科学和遥感等不同领域中的量子成像铺平道路。
摘要:荧光碳点(CD)近年来引起了越来越多的关注,这是因为它们在低毒性,对光漂白,较小的尺寸,易于功能化,生态友好型合成和多样化成像能力方面的最大优势。但是,CD的不清楚的光学机制极大地限制了其进一步的应用。了解CD的光学特性对于具有功能目的的顶级设计CD的可控开发具有重要意义。在这篇综述中,我们首先总结了CD的光吸收特性,并证明了CD的核心和壳的吸收光谱和电子过渡之间的关系。此外,我们总结了CD的常见荧光机制,包括表面状态,量子限制效应,共轭结构,自被捕的激子,边缘缺陷,自由的曲折位点和多隔音中心。最后,我们还讨论了CD的磷光特性。本综述为如何调整CD的荧光和磷光提供了新的见解。关键词:碳点,光学特性,荧光机制,光吸收分配,磷光
在准备CTBT的生效后,《全面的核测试条约组织》(CTBTO)正在积极发展OSI功能。被动地震学监测的最新进展包括升级遥测系统,用于数据处理软件的数据传输和开发,以适应地形具有挑战性的环境。为了评估其他地球物理技术的当前OSI地球物理成像能力,以及以综合方式进行深层的现场表征应用,在2022年9月在奥地利YBBStaler Alps进行了广泛的现场测试。共振地震学和主动地震调查,磁性和重力场映射以及电导率测量是在40-350 m深度的三个轮廓上进行的,模仿地下核爆炸产生的地下腔。这是新获得的主动地震数据记录系统的第一个现场测试,其目的是开发用于主动地震调查的OSI方法。在所有地球物理技术中,主动的地震调查具有为更深的位点表征提供最高分辨率的潜力。
“要明确,MBIC已经存在,我们将继续发展它,”执行董事罗伯特·克拉克(Robert Clarke)博士说。“中西部的研究人员已经与我们的设施合作,研究了生物学,农业,生态学等的科学问题。新技术尚未在北美其他任何地方可用,将于今年晚些时候在荷米尔研究所安装,进一步扩大了我们最先进的生物成像能力,以包括Tomog Raphy。我们继续扩大我们的STEM教育机会,并旨在在我们的校园内创建一个专门的学习空间,以便从K-12到研究生水平的明尼苏达州人可能会随着研究领导者和创新者而发展。我们与Riverland社区学院的合作伙伴关系将有助于促进重要的劳动力培训,以迅速增长的领域,该领域几乎在每个级别都经历了全球需求量很高。我们仍然致力于确保我们对MBIC的最终愿景可以充分实现,这是为了受益于明尼苏达州及其他地区。”
阐明生物系统的生物化学是在正常生理和病理学中的角色下的关键。人脑是一种高度复杂的器官,依靠多种必需的化学元素和化合物来维持正常的功能。这种复杂性反映在大脑的巨大结构和化学异质性中,不同的大脑区域表现出不同的细胞群体,功能和化学组成[1]。因此,为了定义大脑的生物化学,将出色的化学敏感性与高分辨率成像能力相结合的技术至关重要。发现此信息至关重要;不仅在理解大脑的生理功能,而且还探讨了在衰老和病理过程中发生的生化变化,例如参与退化性脑疾病的发作和进展的生理变化,包括阿尔茨海默氏病和帕金森病。更好地了解患病大脑中的生化环境如何强烈支持可行的物理化学技术用于疾病诊断和治疗。提供化学敏感的纳米级分辨率成像的一种技术是STXM形式的X射线光谱。此基于同步加速器的方法配备了元素组成
抽象定量相成像(QPI)从强度测量中恢复了光的精确波前。可以从这些量化的相移中提取半透明微观体的地形和光密度图。我们使用氮化硅倍曲底金属固有的色差束在相干束束的尖端进行定量相成像。我们的方法利用光谱多路复用来使用彩色摄像头从单个捕获中的多个散焦平面恢复相位。我们的0.5 mm光圈金属量具有28°视图和0.2π相分辨率(空气中的〜0.1λ)显示出可靠的定量相成像能力,用于内窥镜束束的实验。由于光谱功能直接在成像晶状体中编码,因此金属既充当聚焦元件,又是光谱过滤器。使用简单的计算后端的使用将实现实时操作。在据报道的基于金属的QPI中,完全缓解了内窥镜检查相时成像方法的关键局限性。