(2) to continuously update the WHO lists of priority medical devices available via WHO's Priority Medical Devices Information System (MeDevIS), including in respect of medical imaging equipment, related nomenclature, consumables, calibration, technical specifications, traceability, preventive maintenance and training material, level of healthcare use and relation to clinical guidelines, to serve as a reference for Member States and relevant stakeholders, as per decision WHA75(25)(2022)关于医疗设备命名法的标准化,以及成员国的考虑,当开发了医疗设备或基本诊断的国家清单时;
此外,委员会还讨论了“Sirb”的最新进展,这是一组遥感卫星,利用雷达技术提供无与伦比的成像能力,同时开发整个空间价值链。Sirb 计划侧重于在国内开发前所未有的商业设计、组装和集成能力。该计划将解锁空间价值链的一个重要部分,重点是开发与数据商业使用直接相关的地球观测航天器。
抽象背景:三重阴性乳腺癌(TNBC)是一种侵袭性肿瘤,其死亡率极高,由于缺乏有效的治疗靶标。作为与肿瘤发生和肿瘤转移相关的粘附分子,分化44(也称为CD44)在TNBC中过表达。此外,特定的透明质酸类似物,即壳聚糖寡糖(CO)可以有效地获得CD44。在这项研究中,设计了一个共涂层的脂质体,将光杀手(HPPH)作为660 nm光介导的光敏剂和Evofofosfamide(也称为TH302),为缺氧激活的前药。获得的脂质体可以通过荧光成像来帮助诊断TNBC,并通过协同光动力疗法(PDT)和化疗产生抗肿瘤治疗。结果:与非靶向的脂质体相比,靶向脂质体在体外表现出良好的生物相容性和靶向能力。在体内,靶向脂质体具有更好的荧光成像能力。此外,载有HPPH和TH302的脂质体比在体外和体内的其他单一疗法组表现出明显更好的抗肿瘤作用。结论:令人印象深刻的协同抗肿瘤效应,加上优质的荧光成像能力,良好的生物相容性和较小的副作用,使脂质体赋予了诊断和过表达癌症治疗的未来转化研究的潜力。关键字:三重阴性乳腺癌,光动力疗法,壳聚糖寡糖,CD44,脂质体
过去,具有足够成像能力的卫星解决方案对于许多行业来说成本过高,而且无法提供真正有用的持久覆盖范围。L3Harris 长期以来一直生产一些最值得信赖的太空“眼睛”,它通过重新设计其高端光学器件、专利结构和出色的图像质量产品来满足这一需求,从而生产出 SpaceView 系列高性能成像有效载荷。SpaceView 系统专为小型卫星群量身定制,以实惠的价格实现更快的重访率和更大的覆盖范围——同时仍能提供关键情报。
摘要。三维(3D)成像对于理解复杂的生物学和生物医学系统至关重要,但是活细胞和组织成像应用仍然面临着由于成像速度的限制速度和强烈散射而面临的挑战。在这里,我们提出了一种独特的相调节刺激的拉曼散射断层扫描(PM-SRST)技术,以实现细胞和组织中的无标记的3D化学成像。为了完成PM-SRST,我们使用空间光调节器来电子方式操纵沿针头贝塞尔泵束的聚焦Stokes束进行SRS层析成像,而无需进行机械Z扫描。我们通过实时监测以8.5 Hz体积速率的水中的三键珠的3D布朗运动以及对MCF-7细胞中乙酸刺激剂的即时生化反应,证明了PM-SRST的快速3D成像能力。此外,将贝塞尔泵束与更长的波长stokes梁(NIR-II窗口)相结合,在PM-SRST中提供了出色的散射弹性能力,从而在更深的组织区域中可以快速断层扫描。与传统的点扫描相比,PM-SRST技术在高度散射介质(例如聚合物珠幻影和诸如猪皮肤和脑组织等生物学)的成像深度方面提供了〜双重增强。我们还通过观察氧化氘分子到植物根中的动态扩散和摄取过程来证明PM-SRST的快速3D成像能力。开发的快速PM-SRST可用于促进代谢活性的无标签3D化学成像以及活细胞和组织中药物输送和治疗剂的功能动态过程。
Merln着火了!从好的意义上讲。自《梅尔魔术》杂志的第一版以来,我们的社区蓬勃发展,现在拥有近200名专业人士对所有多方面学科的再生医学充满热情。Merln的轨迹无非是世界一流的纳米,微型和生物制造设施,如今使我们能够继续成为该领域的领先者。在过去的几年中,我们整合了实验室技术平台,扩大了我们的专业细胞培养空间,以包括专用的3D体外模型实验室,同时增强了我们的材料表征和成像能力。我们改善的分子理解已越来越多地用于临床翻译。在本期的每日时刻和我们出色的科学家的精选故事中,在本期中捕获了一些最新的技术进步。
a. NPASE 中心的任务是培训、装备和使用全球可部署和不可部署的 PA 和 VI 部队,这些部队由现役和预备役人员组成,以支持海军部长、海军作战部长和信息部长,以及具有 PA 和 VI 能力的舰队、地区、海军组成部分和联合作战指挥官。所有 NPASE 部队均可立即部署,以支持当前和新兴的 PA 和 VI 需求。这包括提供接受过 PA 和 VI 规划、执行和评估培训的个人和分遣队;广播和印刷新闻;多媒体制作;以及专门的手持成像能力,以记录海军和其他军种的部队部署和活动,以实现海军、军事和国家目标。
复眼 (CE) 是一种先进的光学视觉系统,具有大视场、无限景深和动态成像能力等显著特点,在机器人视觉、无人机检测和医学诊断等应用领域展现出巨大潜力。与主要由多摄像机阵列组成的宏观 CE 相比,紧凑型集成 CE 因其便携性以及可与微型机器人和体内医疗设施灵活集成的可能性而备受关注。到目前为止,人们已经在这个领域投入了相当大的努力,其中制造技术对于开发能够进行大视场成像、深度信息收集和三维成像的人工 CE (ACE) 至关重要。先进 ACE 的实际应用面临挑战和机遇。本文回顾了制造 ACE 的最新技术,然后简要总结了它们在不同领域的潜在应用。最后,讨论了 ACE 当前面临的挑战和前景。
摘要:大脑细胞网络的信息处理能力取决于神经元及其分子和功能特征之间的物理布线模式。映射神经元并解决其单个突触连接可以通过在纳米级分辨率下以密集的细胞标记在纳米级分辨率下实现。光学显微镜独特地定位于可视化特定的分子,但是由于分辨率,对比度和体积成像能力的限制,光学显微镜的密集,突触级的电路重建已经无法触及。在这里,我们开发了基于光微镜的连接组学(LICONN)。我们将专门设计的水凝胶嵌入和扩展与基于深度学习的分割和连通性分析进行了整合,从而将分子信息直接纳入突触级脑组织重建中。liconn将允许以易于采用的方式在生物学实验中进行突触级的脑组织表型。