我们如何利用经典的分子动力学模拟来模拟和分析控制多晶硅沉积参数对沉积多晶硅膜结构的影响的现象和机制。多晶硅膜的晶粒形状和大小、结晶度、晶粒边界结构和应力取决于生长温度、生长膜中的温度分布、沉积通量、通量变化以及由于沉积通量而传递到膜表面的能量。主要结果包括:(i)沉积的多晶硅薄膜的结晶度分布对应力、温度和沉积流不同参数的依赖性,(ii)沉积初期的生长模式,(iii)多晶硅薄膜沉积初期种子晶粒的相互作用和稳定性以及从孤立晶粒生长到多晶硅生长的过渡,(iv)不同硅相的温度、结晶度、晶体形状和热导率的相互作用,(v)描述了晶粒生长的四个不同阶段:成核、生长、消失和延迟。
加拿大政府已采取重要措施,于 2023 年 3 月发布了修订后的《放射性废物管理和退役政策》(以下简称“政策”),实现了加拿大放射性废物管理框架的现代化。1 作为政府放射性废物管理政策审查的一部分,2020 年秋季,加拿大自然资源部长责成核废物管理组织 (NWMO) 领导与加拿大人、土著人民和行业代表的单独接触过程,为制定加拿大所有放射性废物的综合长期管理战略提供信息,特别是目前尚未制定长期计划的低放射性和中放射性废物。2 这项任务认可了 NWMO 在让加拿大人和土著人民参与制定安全、长期管理废旧核燃料计划方面拥有的 20 年专业知识。在制定该计划时,NWMO 被要求提供:
基于新的实验观察结果,对影响316L不锈钢组件的激光粉末床融合添加剂制造的因素进行了全面分析。与现有的假设相反,研究表明,固化模式和粉末中纳米氧化物的存在都没有足以充分阐明观察到的谷物细化。相反,这项研究突出了强烈铁氧体形成组成与同时存在Mn-Si纳米氧化物之间的复杂相互作用,这是微结构改进过程的重要贡献者。这项研究探讨了涉及纳米氧化物的异质成核机制的作用,并为激光粉末床融合过程中的固化机制提供了新的见解,从而增强了我们对激光粉末床融合过程中微观结构控制的理解,并为高级材料工程提供新颖的观点。
#调查员名称研究标题会议和出版日期1。Amani A. Alhejji,Norah F Alhur,Nourah H al Qahtani,Fahd M Alshehri,Zahra Alsafwani,Esra Ahdal,Sarah Almofty,Noor B. Almandil,Sayed Abdulazeez,J.Francis Borgio。2024。使用活细胞成像和扫描电子显微镜对脐带血成核红细胞的比较形态分析。沙特医学与医学科学杂志。2024; 12(1):90。doi:10.4103/sjmms.sjmms_40_24 [链接] 2。Mohammad H. Albakhit,Sarah Almofty,Rahaf Alquwaie,Norah F Alhur,Reem Aljindan,Noor B. Almandil,J。FrancisBorgio,Sayed Abdulazeez。2024。在细菌染色IRMC272中生物合成基因簇的鉴定和表征,以发现针对念珠菌的抗真菌化合物。沙特医学与医学科学杂志。2024; 12(1):89。doi:10.4103/sjmms.sjmms_40_24 [link]
还原剂和保护剂对于湿化学合成至关重要。作为氧化还原过程的基础,还原剂将二价铜盐离子降低到零价状态,并进一步诱导其成核和生长。保护剂用于使超铜粉的湿化学合成功能化,并吸附在铜颗粒表面上,以减少表面能量以控制生长,防止聚集和阻碍氧化。13在大多数情况下,抗坏血酸是合成超铜粉末颗粒中最常用的还原剂,而中等降低速率可确保强大的可控性。14吡咯烷(PVP),15杆基三甲基氨基铵(CTAB),16个烷基胺(Cetyl,octadecyl),17个和其他大分子分子长碳链表面表面表面表面以改善分散和避免聚集的生长,以避免进行聚集和
在回收铝屑时,氧化铝层会产生很大的问题,限制铝金属在相邻屑之间的结合。多位研究人员 [9,27,29,30] 报告称,如果氧化铝层破裂并分散在基质中,则回收材料的屈服强度、抗拉强度和显微硬度会提高,因为会形成由铝和氧化铝颗粒组成的复合材料。然而,他们也观察到这种回收铝复合材料的塑性显著下降。然而,其他作者 [18] 观察到氧化物会刺激空腔成核,从而产生过早断裂,随着氧化物含量的增加,材料的伸长率会降低。此外,他们指出,氧化物的浓度对回收材料的机械性能影响较小 [13,31],这与之前提出的观点相矛盾。总体而言,就屑片之间的结合而言,无论是液体还是固体回收屑的方法,氧化层始终被视为一道屏障。
教学大纲: 热力学:第一定律、第二定律、熵、热机、循环过程、熵平衡标准、第一定律与第二定律的结合;麦克斯韦关系、吉布斯-亥姆霍兹方程、热膨胀系数和压缩系数;第三定律:赫斯定律、基尔霍夫定律;相平衡:克劳修斯-克拉珀龙方程、固液/气相-凝聚相平衡、逸度;溶液热力学:拉乌尔定律、亨利定律、吉布斯-杜恒方程、构型熵、常规溶液、过剩函数、点缺陷热力学;自由能:相图评估、吉布斯相律、杠杆法则;冶金反应热力学:埃林汉姆图、优势区图;动力学:动力学定律、反应速率理论、晶粒生长动力学、沉淀物成核和生长动力学、扩散控制生长的概念和建模。
使用脉冲电沉积法制造纯镍和纳米复合镍-SI 3 N 4涂层。制造过程的初始条件是当电流密度为4 a.dm -2,占空比为50%,脉冲频率为10 Hz。原子力显微镜(AFM)用于执行评估每个涂层表面的任务。该实验的目标是通过增加每个参数,然后将结果与被认为是基线的条件进行比较,从而更好地了解情况。由于已经进行了观察结果,似乎平均正方形和根平均平均平均平均粗糙度高于其纯镍构成的纳米复合镍涂层的平均粗糙度。平均间距和波浪数量数据表明,在表面上存在偏爱的成核位点的任何位置都增加了。无论位置如何,情况就是这种情况。这些发现得到了以下事实的支持:两个指标都表现出向上的趋势。
关键字:Gan,Mishemt,MBE,MMIC,AL 2 O 3,可靠性摘要雷神已经在<111> si Hemt技术上采用了分子束外延(MBE)开发了gan的状态。相对于MOCVD(〜1000 o C)的分子束外延(MBE)的较低生长温度(〜750 o C)导致热性能提高和从IIII-V/SI界面减少微波损失。这些因素结合起来,以使最有效的高功率(> 4 w/mm)在高频(≥10GHz)上进行操作,这些操作通常与Si上的gan hemts无关。较低的温度MBE生长过程减少了生长后冷却后的GAN拉伸应变,这又使Aln成核层用于GAN HEMT生长。这与基于MOCVD的生长中使用的复杂的Algan/Aln菌株补偿层相反,这些层已显示出显着降低IIII-V外延层的总体导热率。此外,低温MBE ALN成核层导致Si/IIi-氮化物界面处的界面电荷降低。这种大大降低的电荷使雷神能够实现<0.2dB/mm的创纪录的低微波损失(对于SI上的GAN),最高为35 GHz,可与SIC上的GAN相当[1]。最重要的是,在100mm高电阻(> 1,000 ohm-cm)上实现MBE种植的Gan Hemt Epi层质量和均匀性时,记录了创纪录的低微波损失(> 1,000 OHM-CM)<111> Si,可与MOCVD在SIC上生长的GAN相当。板电阻低至423欧姆 /平方英尺(±0.8%),迁移率为〜1,600 cm 2 /v-s。这样做是为了使整个栅极电容,IDSS,IMAX和V t与为了减少门泄漏,雷神用ALD沉积了Al 2 O 3作为高k栅极介电介质形成不幸的。为了最大程度地减少门泄漏,而不会影响关键的RF设备特性(例如FT,FMAX,POWER和PAE),使用电荷平衡模型与栅极介电堆栈一起设计Schottky层厚度。
旨在理解晶体如何成核,生长和组装成较大结构的结构域。[1,2]来自开普勒对1611年雪花对称的兴趣,随后史长期在1669年对岩石晶体的迷恋,到目前为止,直到现在,结晶已被认为是最重要的物理化学过程,并且已经证明了晶体结构之一,已证明凝结物质的物理特性。[3]通常,基于假设它们通过添加单一裂纹实体(单体单体单体)生长的假设来理解晶体习惯和特性的or-。[2-5]尽管这一假设是我们对晶体生长过程中原子过程的解释的核心,但在过去的二十年中,其总数受到了挑战。[6]即,来自合成,地质和生物逻辑系统的大量证据表明,结晶可以继续附着广泛的高阶实体(Partiles)。[7]这些包括簇状的离子或分子种类,液滴以及结晶和无定形颗粒。通过粒子附着(CPA)结晶(一种所谓的非经典结晶机制)已知形成形态学和纹理模式,这些模式在经典成核和生长模型的范围中无法解释。[8]这并不奇怪,因为CPA是一个多步骤过程,其中每个步骤在热力学和动力学之间都有自己的插入相互作用,从而定义了非常独特的晶体生长途径。[9-11]每个步骤都会受到多种物理化学的影响。举例来说,非晶颗粒附着的结晶涉及无定形颗粒的形成和稳定,它们的表达,最后转化为结晶相。最近,已针对研究和建模不同的CPA途径进行了重大努力。[12-14]对每个步骤的机械理解有可能生成一个综合工具包,以设计和合成从经典结晶模型的局限性的新型材料系统的设计和综合。但是,仍然存在许多知识差距。生物矿化组织被认为是通过在整个动物史的整个文档中的无定形前体结晶而形成的。[15]这些生物材料表现出各种层次结构化的矿物有机结构,可为生物体提供各种功能。[16]选择了无定形粒子附着的结晶