这是以下文章的同行评审版本:Zhang, S. et al. (2021) Integrated assembly and photopreservation of topographical micropatterns. Small , 17(37), 2103702,最终版本已发布于:10.1002/smll.202103702
“地形微图案”(TMP)。这些组装技术很有用,但它们也依赖于昂贵而专业的定位工具和训练有素的人员,并且可能受到材料特性和产量的限制。光学组装是一种替代策略,用于将微型和纳米物体作为构建块来组装功能结构。[9] 光学组装依赖于光学微操作技术,例如光镊[9–13]光热泳镊子[14–16]光伏镊子[17–20]和光电镊子[21–30],其中微型和纳米物体在流体环境中被光学组装成图案,然后干燥以用于各种应用。这种方法近年来发展迅速,保留了传统方法的许多优点,同时易于实施并允许经济高效地操作。在不同的光学微操作技术中,光电镊子 (OET) 已被证明特别适用于并行组装大量微型和纳米物体,[22–31] 也适用于组装“大”尺寸的微物体(至少一个尺寸大于 150 µ m)。 [32–34] 然而,OET 组装(以及其他光学组装技术)的一个限制是
摘要:在 EMPIR 项目 M y R ail S 和 W ind EFCY 的框架内,METAS 使用商用现货组件开发了电力的主要标准。唯一需要定制的部分是控制采样系统并确定电压和电流不同频率分量的幅度和相位的软件。该系统可在 DC 至 9 kHz 的范围内运行,即使信号失真也是如此。基本系统限制为 700 V 和 21 A 。其功率不确定度在工频下为 15 µW/VA ,在 9 kHz 时增加到 1.8 mW/VA 。随着扩展到 1000 V 和 360 A ,系统在工频下的功率不确定度达到 20 µW/VA ,在 9 kHz 时增加到 510 µW/VA 。对于更高的电压或更高的电流,使用相同的原理。然而,不确定性主要由来源的稳定性决定。电压和电流通道还可以独立使用来校准和测试电能质量仪器。得益于时间戳系统,该系统还可用于校准与 UTC 同步的相量测量单元。
MITEQ 的 136460 型宽带三通道下变频器可用作低地球轨道毫米波辐射计的第二个 IF 下变频级。该系统与五个 MITEQ 频率多路复用器之一作为输入级,可在目标频段提供最平坦的频率响应、输出功率与输入功率的高线性度以及目标频段之间以及其他不良信号之间的高隔离度。此外,这种高可靠性、星载集成组件经过优化,具有体积小、功耗低、重量轻和出色的运行热稳定性。