co 2气液吸收是具有碳捕获和存储(BECC)的生物能源最相关的技术之一。目前建议在压力/温度旋转过程中碳酸钾作为最可行的BECC过程,在该过程中,它缓冲了CO 2与羟基离子的吸收反应。在整个过程中,溶剂加载在进入吸收器之前将吸收器进入高度之前从低点变化。对于工艺设备的尺寸,在任何情况下都必须知道吸收动力学。为了研究动力学参数,开发了测量设置,并在50至75°C之间测量了溶剂载荷为0.3至0.7的CO 2吸收液的溶剂溶液。通过将CO 2吸收到纯水中来测量传质系数。反应速率常数K OH的获得值显示在增加溶剂载荷时激活能的减少。通常,溶剂加载的增加会导致K OH的值增加。但是,由于较高的负载下pH值较低,可观察到的吸收率降低。一种克服碳酸钾的动力学限制的方法是吸收启动子的利用。在吸收过程中合成并测试了模仿化合物锌(II)循环的碳赤铁蛋白酶。在研究条件下,未发现Zn(II) - 循环的促进作用。
碳水化合物,生物细胞中必不可少的有机分子,在医学,农业,生物技术,材料设计和工业中具有多种应用。了解它们的结构和功能可能有助于例如,具有改善营养和化学特性的新作物变异的发展。该项目着重于3D分子建模,以研究碳水化合物聚合物的化学和物理性质。通过在3D中组装分子并使用计算工具分析它们,该项目旨在确定所研究分子的最稳定构象。结果表明,碳水化合物分子在增加聚合程度时显示出更高的结构动态行为。短期最小化后,单糖分子可以获得稳定的构象。但是,较长的多糖需要很长时间才能获得稳定的构象。在单糖的情况下,只有糖环获得稳定的构象,而多糖具有糖苷键。糖苷键的二面性PHI和PSI角在不同的聚合物中有所不同。它还揭示了三维空间和散点图中分支和线性聚合物之间的结构差异,以及键角之间相关性的模式。需要进一步的研究来验证这些发现。碳水化合物聚合物构象的研究在生物技术和生物医学中具有重要的应用,本报告旨在为扩大该领域关键词中的知识做出贡献
1000 10.00 10.00 10.00 10.00 10.50 10.30 10.30 10.00 10.80 <
传热设备,例如热管,蒸气室,热通道,微通道散热器和毛孔冷却板,依靠二维稳定的稳定热传导来热管理电信,航空航天,航空航天和微电极的热传播组件。传导形状因子可以评估这些设备的二维稳定热传导。设备的nulus的几何形状及其在热生成组件上的机械附件可能会有所不同。鉴于单面加热和冷却的突出性,二维热传导通常是通过纳鲁斯扇形进行的。第一次开发了一个分析模型来预测环形扇区的传导形状因子。本模型是先前开发的等效圆形环模的扩展,并应用了等效的同心圆形环扇门。该模型的定量是参数边界几何的有限元元素建模的结果,在相对差异10%的相对差异之内捕获了大多数数据。目前的模型为同心形状的等温边界之间形成的环形扇形的形状因子提供了模拟,封闭形式的分析解决方案。更重要的是,它为设计和优化新型传热设备提供了一个统一的平台。
德国航空航天中心(DLR),网络能源系统研究所,象征者。4, 70563 Stuttgart, Germany b Stuttgart Research Initiative on Integrated Systems Analysis for Energy (STRise), Keplerstraße 7, 70174 Stuttgart, Germany c German Institute for Economic Research (DIW Berlin), Mohrenstraße 58, 10117 Berlin, Germany d Research Center for Energy Economics (FfE), Am Bl¨utenanger 71, 80995 Munchen,德国E Reiner Lemoine Institute,Rudower Chaussee 12,12389柏林,德国柏林F学院高压设备和电网研究所,数字化和能源经济学,数字化和能源经济学(IAEW),RWTH AACHEN大学,Schinkelstraße6 52056 Aachen,德国ACHEN,DEMACHINCE ISACE ISACHENICERIADS ACHENICTION for POLIVERINGIAL POLESICTIST和ELECTRIVE) J¨agerstraße 17-19, 52066 Aachen, Germany h Institute for Power Generation and Storage Systems (PGS), E.ON ERC, RWTH Aachen University, Mathieustraße 10, 52074 Aachen, Germany i J¨ulich Aachen Research Alliance, JARA-Energy j Chair for Management Science and Energy Economics (EWL), University of Duisburg-Essen, Universit¨atsstr.11,45117德国埃森K能源经济学与理性能源使用研究所(IER),斯图加特大学,Heßbréuhlstraße49a,70565德国斯图加特,德国
Influence of public acceptance of wind turbines on renewable expansion • Expansion planning for Ireland and Germany (resolution: 8 sub- regions each) for 2030 with high renewable shares • Maximum onshore wind potential constraint based on local public‘s acceptance (from survey data) • In Germany, onshore wind is mainly substituted by PV, while in Ireland, it is mainly substituted by offshore wind • Constrained onshore potential slightly在爱尔兰的成本上涨比德国的成本上涨的成本增加(爱尔兰:2.55%,德国:0.5%)
b。在待机模式中,输出处于高阻抗状态,而不是OE#输入。自动睡眠模式该设备具有自动睡眠模式,可最大程度地减少功耗。当地址总线的状态保持稳定为T ACC + 30N时,设备将自动进入此模式。DC特征表中的 ICC 4显示了当前规范。 使用标准访问时间,当地址更改时,设备将输出新数据。 读取模式,将设备自动设置为读取设备加电或硬件重置后的数组数据。 检索数据不需要命令。 该设备还可以在完成嵌入式程序或嵌入式擦除算法后读取数组数据。 设备接受扇区擦除悬挂命令后,该设备将进入扇区擦除悬挂模式。 系统可以使用标准读取时间读取数组数据,除了它在擦除悬浮扇区中的地址读取,设备会输出状态数据。 在扇区擦除悬挂模式下完成编程操作后,系统可以再次读取数组数据,并具有相同的例外。 有关更多其他信息,请参见“部门擦除暂停/简历命令”。 系统必须发出重置命令,以重新启用DQ5较高或在自动选择模式时读取数组数据的设备。 有关其他详细信息,请参见“重置命令”。 OE#引脚处于逻辑高级别时输出禁用模式(V B IHICC 4显示了当前规范。使用标准访问时间,当地址更改时,设备将输出新数据。读取模式,将设备自动设置为读取设备加电或硬件重置后的数组数据。检索数据不需要命令。该设备还可以在完成嵌入式程序或嵌入式擦除算法后读取数组数据。设备接受扇区擦除悬挂命令后,该设备将进入扇区擦除悬挂模式。系统可以使用标准读取时间读取数组数据,除了它在擦除悬浮扇区中的地址读取,设备会输出状态数据。在扇区擦除悬挂模式下完成编程操作后,系统可以再次读取数组数据,并具有相同的例外。有关更多其他信息,请参见“部门擦除暂停/简历命令”。系统必须发出重置命令,以重新启用DQ5较高或在自动选择模式时读取数组数据的设备。有关其他详细信息,请参见“重置命令”。OE#引脚处于逻辑高级别时输出禁用模式(V B IH
这些数据发布说明提供了有关从过渡系外行星调查卫星(TESS)处理和导出数据的信息。此数据发布中包含的数据产品包括全帧图像(FFIS),目标像素文件,光曲线文件,侧支像素文件,进行抛弃基础向量(CBVS)和数据验证(DV)报告,时间序列,时间序列以及关联的XML -FILES。这些数据产品是由苔丝科学加工操作中心(SPOC,Jenkins等人,2016年)在NASA AMES研究中心,由TESS Instrument收集的数据,该数据由马萨诸塞州理工学院(MIT)的TESS有效载荷运营中心(POC)管理。这些数据产品的格式和内容记录在科学数据产品描述文档(SDPDD)1中。SPOC科学算法主要基于开普勒任务科学管道的算法,并在开普勒数据处理手册(Jenkins,2020年)中进行了描述。2 Twicken等人记录了数据验证算法。(2018)和Li等。 (2019)。 苔丝仪器手册(Vanderspek等人 ,2018年)包含有关苔丝仪器设计,检测器布局,数据属性和任务操作的更多信息。 TESS任务由NASA科学任务局资助。(2018)和Li等。(2019)。苔丝仪器手册(Vanderspek等人,2018年)包含有关苔丝仪器设计,检测器布局,数据属性和任务操作的更多信息。TESS任务由NASA科学任务局资助。
O. Ohneiser 1 ,M. Jauer 1 ,H. Gürlük 1 ,H. Springborn 2 1 德国航空航天中心 (DLR),飞行引导研究所,Lilienthalplatz 7,38108 Braunschweig,德国 2 FH Joanneum - 应用科学大学,Alte Poststraße 149,8020 Graz,奥地利 摘要 面对以飞行为中心的空中交通管制 (ATC) 和未来管制员工作岗位 (CWP) 的更多监控任务,空中交通管制员 (ATCo) 始终将注意力集中在人机界面 (HMI) 上的相关位置变得更加重要。本文概述了不同领域有关注意力和注意力引导 (AG) 的相关文献,解释了无扇区空中交通管理 (ATM) 的 AG 原型的概念及其在单一欧洲天空 ATM 研究 (PJ.16-04-03,SESAR2020) 过程中的验证计划。 AG 原型考虑了三个方面。首先,所需的关注区域:辅助系统根据雷达和飞行计划数据等输入数据计算 ATCo 应关注的位置。其次,依靠眼动追踪和用户输入的外部系统确定当前 ATCo 的关注点。第三,如果所需的关注区域和实际关注区域不同,将触发引导 ATCo 注意力的机制,同时考虑升级视觉提示的策略。后者包括智能显示与时间、位置和外观相关的动作指示器以及战术前注意力不集中指示器