我们的桥梁有两层厚,两根线宽,两根线之间有很小的间距(0.4 毫米)。为了以相对较高的速度(60 毫米/秒)打印桥梁,我们在打印水平桥梁段(0.1 毫米的细丝)之前强制挤出少量塑料。我们的桥梁设计为快速打印,这会对其外观产生负面影响 - 特别是,第一根打印的线经常下垂。然而,这对桥梁顶部的质量影响不大,如图 3 所示。虽然本文中显示的所有结果都是在 Makerbot Replicator 1 上使用 ABS 塑料打印的,但我们也使用相同的参数在 Ultimaker 2 上使用 PLA 塑料成功测试了我们的桥梁。我们的脚手架算法与用于打印桥梁的确切几何形状无关。
最初应用于1996年制药的开发,制药的3D印刷已成为许多研究和相当大的进步的来源。自那个时期以来进行的许多研究集中在探索和完善制药应用的3D打印技术。仍然,近年来,商业规模能力的发展已经大大提高。FDA批准了第一个3D印刷制药,Spritam,这项3D打印的研究,再加上其商业制造规模,证明了3D打印方法可用于大规模制造制药的事实。1
1赫尔辛基大学和赫尔辛基大学医院耳鼻喉科 - 颈部和颈部外科系,FI-00029 HUS,HUS,赫尔辛基,芬兰2号,赫尔辛基大学血管外科,赫尔辛基大学和赫尔斯基大学赫尔斯基大学赫尔斯基大学,芬兰3夫妇,法律,芬兰,法学院,福拉斯,福拉斯,96399.9639999999。 rosa.ballardini@ulapland.fi 4英国伦敦大学城市法学院,英国伦敦大学EC1V 0HB; marc.mimler@city.ac.uk 5苏塞克斯法学院,苏塞克斯大学,布莱顿BN1 BN1 9RH,英国; phoebe.li@sussex.ac.uk 6 Aalto University机械工程系,芬兰02150; mika.salmi@aalto.fi 7哥本哈根大学法学院生物科学创新法(宿比尔)高级研究中心,丹麦哥本哈根1172; timo.minssen@jur.ku.dk 8设计,生产与管理系,特威特大学,荷兰7522 NB Enschede; i.gibson@utwente.nl 9系统肿瘤学研究计划,医学院,赫尔辛基大学,FI-00014赫尔辛林Yliopisto,芬兰赫尔辛基,芬兰 *通信:ante.pettersson@helsinki.fi); antti.makitie@helsinki.fi(a.m.)
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
数字光处理 (DLP) 是一种基于大桶光聚合的 3D 打印技术,可制造通常由化学交联聚合物制成的部件。快速增长的 DLP 市场对聚合物原材料的需求不断增加,同时人们对环境的关注也日益增加。因此,使用闭环可回收墨水进行循环 DLP 打印对于可持续发展至关重要。低温烷基取代的 𝜹 -戊内酯 (VL) 是一种工业上可获得的生物可再生原料,用于开发可回收聚合物。在这项工作中,通过 VL 的开环酯交换聚合合成的丙烯酸酯官能化聚(𝜹 -戊内酯)(PVLA)被用作平台光前体,以提高 DLP 打印中的化学循环性。一小部分光固化反应性稀释剂 (RD) 将不可打印的 PVLA 转变为 DLP 可打印墨水。各种光固化单体可用作 RD,以调节印刷结构的特性,用于牺牲模具、软致动器、传感器等应用。无论印刷聚合物是热塑性还是热固性,PVLA 的固有可解聚性都得到很好的保留。通过印刷结构的直接本体热解,原始质量 VL 单体的回收率为 93%。这项工作提出了可解聚光前体的利用,并强调了生物可再生 VL 作为循环 DLP 打印的多功能材料平台的可行性。
prep(等离子体旋转电极工艺,AMS 4999a)是一种公认的金属粉末,通过在纵向轴时熔化金属棒的末端。融化的金属被嘲笑,并形成凝固成球(粉末颗粒)的液滴。电极被等离子体融化。我们的粉末是根据准备过程的扩展而产生的,即所谓的ss-prep过程。这使我们能够提供更高质量和球形粉末(根据ISO 13320:2009)。我们已经通过单个步骤和相关机器显示了以序列顺序为您的信息的制造过程。
3D打印是指所有使用加法方法构建组件的制造过程 - 通常制造和将材料层连接在一起以创建3D组件。30年前授予了3D打印系统的第一项专利,预示着在接下来的十年中出现一系列3D打印过程。许多最常见的3D打印过程最初是而且仍然是用来创建原型组件的,并且多年来以多种方式描述了这些技术(例如,快速原型制造,快速制造,添加剂制造,自由形式制造),但是在公众对流程的理解方面,最广泛使用的标签是3D打印,在本报告中将应用该技术的集体名称。随着这些新的制造过程的出现,研究人员很快就确定创建复杂的单一组件的能力提供了用于制造医疗设备的新工具。现在有关于医疗设备3D打印过程使用的近20年记录。大约15年前,生物打印过程开始通过对印刷细胞和其他生物材料进行的初步研究开始出现,现在这些过程已经发展到了将其用于增强医疗设备朝着组合产品增强医疗设备的潜力的阶段。
摘要 本篇评论文章深入探讨了增材制造 (AM) 技术的多样化前景及其对汽车和航空领域的重大影响。首先探讨了各种 AM 方法,例如熔融沉积成型 (FDM)、立体光刻 (SLA)、数字光处理 (DLP)、选择性激光烧结 (SLS)、金属喷射熔合 (MJF)、粘合剂喷射 (BJ) 和定向能量沉积 (DED),特别关注它们在这些行业中的适用性、优势和挑战。然后,本文深入探讨了 AM 在快速成型、功能部件生产和组件维修中的实际应用。结果强调了 SLA 和 DLP 的多功能性和精确度、SLS 的强度和耐用性,以及 LPBF、SLM、EBM 和 DMLS 等基于金属的技术在制造关键部件方面的潜力。 AM 与汽车和航空设计的结合凸显了这些技术的变革性质,推动了轻量化、复杂化和高性能部件的进步。评论最后强调了 AM 的重大机遇,并承认了材料特性、后处理和生产可扩展性方面持续存在的挑战,从而强调了这些领域未来研究和创新的必要性。
一些小型风电 OEM 面临关键原材料的供应链瓶颈。• 稀土磁铁和钢铁价格波动剧烈。• 制造成本翻倍。OEM 正在不断改进其发电机设计,以降低每千瓦安装成本。
基于聚合物的SES具有足够高的离子电导率和出色的热稳定性,高环境稳定性,出色的柔韧性和可扩展的处理,其成本低。[19]基于聚乙烯(PEO)的聚乙烯。但是,它们有一些缺点:室温下的离子电导率低和氧化分解电位(低于4 V)。[20,21,22]在各种聚合物中,基于PEO的电解质是对SSB的最广泛研究的,其优势具有良好的电化学稳定性,具有LI阳极,处理性和兼容性。CE-RAMIC的固态电解质(SES)可以提供改善的电导率和电化学窗户。[23]目前,最常见的SES类是聚合物和陶瓷,例如氧化物(例如LLZO),磷酸盐(E.gnasicon),硫化物(例如Li 10 Gep 2 S 12,Li 6 Ps 5 X)和卤化物(例如Li 3含6,li 3 incl 6,li 3 ybr 6)。[2,18]在复合固体电解质(CSE)或杂交电解质的开发中,将少量(高达40 wt%)的无机活性填充剂(Perovskite,Garnet,Lisicon,Lisicon等)掺入已经广泛报道。[22,23]无机活性填充物可以在CSE的大部分区域形成连续的离子通道,并促进快速离子运输以提供更高的离子电导率,而不会构成基质的灵活性。[24]仍然有足够的空间来发展更好的CSE,以达到更高的离子连接性,而不会降低其机械性能。[25]