添加剂制造,通常称为三维印刷(3D打印),正成为一种越来越流行的方法,用于制造使用传统制造工艺制造的组件。它可以直接从3D设计中启用复杂零件的一步制造。3D打印零件现在定期用于医疗,航空航天,汽车,能源,海洋和消费产品行业[1]。印刷零件的示例包括患者特定的,定制的医疗植入物;航空发动机组件;具有复杂,复杂的特征和内部渠道的零件;晶格结构;以及具有特异性化学成分,微观结构和特性的材料[2]。这些部分是使用金属合金,聚合物,陶瓷和复合材料打印的。但是,金属和金属合金的打印是开发最快的场地,因为其应用,需求和打印独特的功能部分的能力。取决于零件的材料,几何形状和复杂性,可以采用几个3D打印过程[2]。例如,通常使用用于打印金属零件,粉末床融合和定向能量沉积过程。电源粉末的薄层使用高能激光,电子束或电弧熔化,该激光器,电子束或电弧在固体后形成零件。同样,行业中使用了几个过程来打印带有聚合物,陶瓷和复合材料的零件。3D打印过程的几个科学和技术方面的理解很差[1]。例如,金属印刷涉及快速熔化,传热,液态金属的对流流,固化和冷却,所有这些都会影响零件的几何形状,微结构和特性[2]。取决于打印过程,材料和进程条件,冷却速率,温度梯度和固化生长速率可能会发生显着变化,这可以产生各种谷物结构,形态质量和纹理。打印的部分通常患有缺陷,例如孔隙率和破裂,从而降低了组件的机械性能,质量和可维护性。此外,过程计划和控制以提高生产率而不影响零件质量是一项艰巨的任务。所讨论的所有科学和技术问题都会影响印刷零件的成本和市场渗透。正在全球进行研发项目,以更好地了解3D打印的科学和技术,以以具有成本效益且较稳定的方式制作高质量的零件。本期特刊包括对全球领先组织的3D印刷的当代,独特和有影响力的研究。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
航空航天行业以开发和采用尖端技术来应对设计轻型高性能车辆所涉及的挑战而闻名。很明显,基于设计的技术有助于以其速度和有效载荷能力推动航空航天车辆的设计,但在许多情况下,制造业的进步使这些不断发展的设计得以生产。新空间行业的经济力量正在使公司不仅考虑工程产品的未来,而且还要考虑优化制造过程本身的方法,以由更广泛的机器组成,其固定工具较少,可以随着明天的生产需求而发展。从1981年的成立开始,与传统的“减法制造”相比,加性制造(通常称为3D打印)提供了新的可能性,它通过启用按需制造,解锁新的设计功能并以无与伦比的速度允许迭代。虽然3D打印机的设计在控制印刷运动,可打印材料属性和机器可靠性方面受到限制,但随着公司通过扩大可打印材料的数量和类型,打印材料的数量和类型,并提高印刷功能,印刷功能,印刷信封音量和印刷速度,每年都会带来新的打印技术突破。由于价格下降和易用性的提高,随着越来越多的组织可以使用该技术,3D打印变得更加普遍。在大学环境中,3D打印提供
摘要背景:琥珀酸具有巨大的潜力,可以成为基于生物的新基础,用于推导工业中多种增值化学品。基于可再生生物量的琥珀酸生产可以提供一种可行的方法来部分减轻全球制造对石油炼油厂的依赖性。为了改善生物过程的经济学,我们试图通过真菌细胞平台探索可能的解决方案。在这项研究中,尼日尔(Aspergillus Niger)是一种著名的生物基有机酸工业生产生物,因其琥珀酸产生的潜力而被利用。结果:使用核糖核蛋白(RNP)的CRISPR – CAS9系统,连续的遗传操作是在产生柠檬酸菌株的工程中实现的。两种涉及两种副产品的基因,即葡萄糖酸和草酸,被破坏。此外,有效的C 4-二羧酸盐转运蛋白和可溶性NADH依赖性富马酸酸盐还原酶被过表达。所得的菌株SAP-3产生了17 g/l琥珀酸,而使用合成底物在野生型菌株中未检测到可测量水平的琥珀酸。此外,还研究了两个培养参数,温度和pH值,以实现其对成功的粉刺产生的影响。3天后在35°C下获得最高量的琥珀酸,低培养pH值对琥珀酸的产生具有抑制作用。探索了两种类型的可再生生物量作为琥珀酸产生的底物。6天后,SAP-3菌株能够分别从甜菜糖蜜和小麦水解物中产生23 g/L和9 g/l琥珀酸。结论:在这项研究中,我们成功地将基于RNP的CRISPR-CAS9系统应用于尼日尔的基因工程中,并显着改善了工程菌株中的琥珀酸产生。关于栽培参数的研究揭示了pH和温度对琥珀酸产生的影响以及未来在菌株发展中的挑战。使用可再生生物量使用糖浆和小麦稻草水解产物来证明了可再生生物量来生产琥珀酸。关键字:尼日尔曲霉,代谢工程,琥珀酸生产,CRISPR – CAS9系统
微生物生物传感器可以是用于毒性监测的经典方法的绝佳替代方法,这些方法耗时且灵敏。但是,细菌通常通过生物膜形成连接到电极,从而导致问题由于缺乏统一性或较长的装置生产时间而引起的问题。合适的固定技术可以克服这些挑战。仍然,它们的响应可能比基于生物纤维的电极更慢,因为在生物膜期间细菌逐渐适应电子转移。在这项研究中,我们提出了一种可控且可再现的方法来制造细菌模化的电极。该方法由使用纤维素基质的固定步骤组成,然后在存在铁酰胺和葡萄糖的情况下进行电极极化。我们的过程简短,可重现,并使我们获得具有高电流响应的现成电极。固定的电化学活性细菌的出色保存期长达一年。在第一个月最初的50%活动损失后,在接下来的11个月中未观察到进一步下降。我们实施了细菌模化的电极,以使用甲醛(3%)制造一个用于毒性监测的侧向流平台。其添加导致有毒输入后约20分钟的电流减少59%。此处介绍的方法具有发展高灵敏度,易于产生和长长的货架生物生物细菌毒性探测器的能力。©2020作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:进行实验,以获取有关模板打印转移效率的数据,并培训了基于机器学习的技术(人工神经网络)来预测该参数。实验中的输入参数空间包括五个不同级别的打印速度(在20至1120 mm/s之间)以及从0.34到1.69的模板孔的面积比。还研究了三种类型的无铅焊料糊,如下:3型(粒径范围为20-45 µm),4型4(20–38 µm),型5(10-25 µm)。输出参数空间包括打印沉积物的高度和面积以及相应的转移效率,这是沉积物粘贴体积与光圈体积的比率。最后,使用Levenberg -Marquardt培训算法对人工神经网络进行了经验数据。发现网络大小微调的最佳调整因子约为9,导致隐藏的神经元数为160。训练有素的网络能够以平均平均百分比误差(MAPE)低于3%的平均百分比误差(MAPE)来预测输出参数。但是,预测错误取决于输入参数的值,该值在本文中详细列出了。研究证明了机器学习技术在模具印刷过程的产量预测中的适用性。
使用SN-3AG-0.5 Cu合金将BI 0.5 SB 1.5 TE 3热电(TE)元件直接焊接到Cu电极。界面是声音,粘结强度令人满意(8.6 MPa)。然而,在150 C的高温存储(HTS)测试中,焊料层迅速耗尽了300 h和600 h,粘结强度大幅降至1.5 MPa。通过在TE元件上的电压层电压层进行电镀,尽管导致低粘结强度为1.9 MPa。在BI 0.5 SB 1.5 TE 3元件上添加富含SN的薄膜和Ni屏障层导致高粘结强度为12.1 MPa,仅在150°C的HTS可靠性测试1000 h后仅略微降低。 BI 0.5 SB 1.5 TE 3 / CU接头的声音接口即使在175 C下HTS后仍保持其稳定性1000 h。
3D打印是指所有使用加法方法构建组件的制造过程 - 通常制造和将材料层连接在一起以创建3D组件。30年前授予了3D打印系统的第一项专利,预示着在接下来的十年中出现一系列3D打印过程。许多最常见的3D打印过程最初是而且仍然是用来创建原型组件的,并且多年来以多种方式描述了这些技术(例如,快速原型制造,快速制造,添加剂制造,自由形式制造),但是在公众对流程的理解方面,最广泛使用的标签是3D打印,在本报告中将应用该技术的集体名称。随着这些新的制造过程的出现,研究人员很快就确定创建复杂的单一组件的能力提供了用于制造医疗设备的新工具。现在有关于医疗设备3D打印过程使用的近20年记录。大约15年前,生物打印过程开始通过对印刷细胞和其他生物材料进行的初步研究开始出现,现在这些过程已经发展到了将其用于增强医疗设备朝着组合产品增强医疗设备的潜力的阶段。
我们的桥梁有两层厚,两根线宽,两根线之间有很小的间距(0.4 毫米)。为了以相对较高的速度(60 毫米/秒)打印桥梁,我们在打印水平桥梁段(0.1 毫米的细丝)之前强制挤出少量塑料。我们的桥梁设计为快速打印,这会对其外观产生负面影响 - 特别是,第一根打印的线经常下垂。然而,这对桥梁顶部的质量影响不大,如图 3 所示。虽然本文中显示的所有结果都是在 Makerbot Replicator 1 上使用 ABS 塑料打印的,但我们也使用相同的参数在 Ultimaker 2 上使用 PLA 塑料成功测试了我们的桥梁。我们的脚手架算法与用于打印桥梁的确切几何形状无关。