摘要:进行实验,以获取有关模板打印转移效率的数据,并培训了基于机器学习的技术(人工神经网络)来预测该参数。实验中的输入参数空间包括五个不同级别的打印速度(在20至1120 mm/s之间)以及从0.34到1.69的模板孔的面积比。还研究了三种类型的无铅焊料糊,如下:3型(粒径范围为20-45 µm),4型4(20–38 µm),型5(10-25 µm)。输出参数空间包括打印沉积物的高度和面积以及相应的转移效率,这是沉积物粘贴体积与光圈体积的比率。最后,使用Levenberg -Marquardt培训算法对人工神经网络进行了经验数据。发现网络大小微调的最佳调整因子约为9,导致隐藏的神经元数为160。训练有素的网络能够以平均平均百分比误差(MAPE)低于3%的平均百分比误差(MAPE)来预测输出参数。但是,预测错误取决于输入参数的值,该值在本文中详细列出了。研究证明了机器学习技术在模具印刷过程的产量预测中的适用性。
主要关键词