最近,一种名为体积打印 (VP) 的新型基于光的制造方法已成为此类应用的一种有前途的技术,它能够在几秒钟内打印复杂的厘米大小的模型。[26,27] 最近的研究表明,使用从玻璃到生物聚合物等材料,可以创建中空、可灌注结构,并可能针对中尺度血管系统。[28–31] 然而,与上述所有方法一样,VP 也无法覆盖从 µ m/亚 µ m 到 cm 的分辨率范围,因此目前将其应用限制在特征 > 100–200 µ m 的微流体结构上。另一种基于光的方法双光子烧蚀 (2PA) 则提供了互补功能,虽然打印时间和构造尺寸有限,但达到了所有生物制造方法中最高的分辨率(≤ 1 µ m)。 [8] 2PA 是基于高强度脉冲激光诱导的多光子电离,[32,33,34] 并且已被探索用于各种应用,从“纳米手术”到形成细胞指导微通道。[35–41]
此类移动医疗微型机器人的开发和实施,包括软机器人微设备的制造[11,12]、生物相容性或响应性 (自适应) 材料的合成[13–15] 以及体内运动策略。[16–22] 已提出了大量远程控制医疗微型机器人,以实现形状改变、多功能化和重构,以响应不同的刺激,如磁场[23–27]、温度[28,29]、化学物质[30,31]、光[32] 和超声波[33,34],用于各种医疗应用,如靶向药物输送、微创手术和遥感。[35,36] 然而,微型机器人与生物组织的相互作用、复杂的生物流体环境以及多种刺激的重叠是其未来医疗应用面临的主要挑战。[37]
仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫
基于树脂增值税光聚合的3D打印系统,例如立体光刻(SLA)和数字光投影(DLP)技术变得更加易于使用。这些3D打印技术在不同行业中具有数量应用。本研究旨在通过将基于碳的材料(即石墨烯和碳纳米管)添加到液体聚合物中来增强3D打印物体的机械性能。在此工作中进行了根据DLP方法进行调整的液晶显示器(LCD)3D打印技术。它使用LCD屏幕和紫外线LED背光来固化逐层中的液体树脂。将碳纳米管和石墨烯组合成液体树脂,以增强机械性能。与初始树脂相比,该碳材料量变为0.05、0.1和0.2%w/w。使用ASTM D638型标准模型对3D打印样品进行了拉伸测试。20秒暴露时间的0.1%W/W石墨烯混合树脂试样显示,弹性模量从7.31±1.02 MPa增加到9.38±0.37 MPa,最大加速度强度为9.38±0.37 MPa和3.87±1.13 MPa至5.28±0.73 MPa。
这个特刊“ 3D印刷聚合物材料”旨在彰显这个快速发展的领域的最新进步和挑战。3D打印的聚合物组件在包括医疗保健,航空航天和消费品在内的各种行业中变得越来越重要。该问题寻求贡献,这些贡献会深入到针对3D打印技术量身定制的聚合物合成,表征和应用。兴趣的主题范围从3D打印及其生物医学应用的新聚合物混合物到处理优化和可持续性考虑因素。此问题旨在作为研究人员和工程师共享创新的跨学科平台,从而在3D打印聚合物材料的3D打印中进一步促进。欢迎您在以下链接上提交论文:https://www.mdpi.com/journal/polymers/polymers/3d聚合物材料的打印(助理编辑:robin.luo@mdpi.com) - PORYMER 3D印刷 - 生物医学应用 - 流程优化 - 可持续性 - 可持续性 - 先进的印刷技术 - 多i -diveiquice -dift
3D打印技术在多个研究应用程序中一直是有用的工具,并且可以与电化学技术相关,可以构建新的传感器和电化学设备,用于传感和生物传感特定靶标[1]。多功能和快速的原型制作,不同形状的可能性以及微型化能力是这种方法的主要优点,该方法是关于电化学和电分析化的[2,3]。这允许制备电极,电细胞,微流体和完整的电化学设备[4-8]。关于添加剂制造,融合沉积建模(FDM)的可访问性和制作广泛材料(例如热塑性聚合物和复合材料)的可能性得到了强调[9,10]。聚乳酸(PLA)是一种可生物降解的材料,它是电化学设备3D打印最常用的聚合物之一,与其他热塑料相比,这可能是由于其易于印刷性,较低的热和环境影响[9,11,12]。
Camana湾Olea的豪华2居室公寓,在Camana Bay享有声望的Olea社区中,这座令人惊叹的2卧室,两间浴室的公寓发现了现代生活的终极生活。高架高于海拔8英尺,并以优越的工艺建造,以一个非凡的套餐融合了奢华,可持续性和便利性。该公寓具有卓越的设计和卓越的建筑,具有16英寸直径的混凝土桩,钢筋梁和隔热混凝土形式(ICF)壁的稳健结构,可耐用性和能量效率。节能和可持续性的特征该房屋结合了最先进的地热空调,与传统系统相比,效率提高了50-60%,而太阳能电池板系统占典型能源使用的40-50%。房主可以节省大量资金和减少碳足迹。内部精致的内饰,开放式起居区无缝连接客厅,用餐空间和高端厨房,并配备了高级电器。宽敞明亮的宽阔窗户充满了自然光,可欣赏热带地面和度假胜地式游泳池的壮丽景色。踏上私人室外空间,享受宁静的氛围,热带微风和充满活力的户外风景。OLEA的豪华便利设施受益于一系列独家便利设施,包括度假胜地式的懒惰河,多个游泳池,最先进的健身中心以及美丽的室外空间。进入网球场和其他娱乐设施可确保每个人都有一些东西。Camana的主要地点允许从Camana湾漫步,居民可以享受无与伦比的进入世界一流的商店,学校,餐馆,娱乐场所和充满活力的市中心的机会。此公寓提供了宁静的生活和城市便利性的完美融合。
开发X射线设备,用于评估,评估图像质量以及质量保证计划所需的物理乳房幻像。理想情况下,这样的幻象应反映乳房的物理特征。首先,组成材料必须具有与乳房组织相同的X射线衰减特性。其次,所使用的幻象应反映实际器官的解剖特征,例如剪影,组成组织的3D分布和变异性(1,2)。所需的解剖现实主义可以源自具有专用乳房计算机层析成像(BCT)扫描仪(2,3)的临床图像,其空间分辨率相对较高。但是,这种方法受到从BCT扫描仪获得的临床乳房图像的全球稀缺限制(4-6)。相反,利用磁性
摘要:我们展示了一种简便的方法,用于批量生产氧化石墨烯(GO)散装修饰的屏幕打印电极(GO-SPE),这些电极(GO-SPE)是经济的,高度可重现的,并提供了分析有用的输出。通过制造具有不同百分比质量掺入(2.5、5、7.5和10%)的GO-SPE,观察到对所选的电分析探针的电催化作用,与裸露的/石墨SPE相比,随着更大的GO掺杂而增加。最佳质量比为10%,达到90%的碳墨水显示出朝向多巴胺(DA)和尿酸(UA)(ua)的电分析信号。×10的幅度比在裸露/未修改的石墨SPE上可实现的大小要大。此外,10%的GO-SPE表现出竞争性低的检测极限(3σ)对DA的DA。81 nm,它优于Ca的裸露/未修饰的石墨SP。780 nm。改进的分析响应归因于居住在GO纳米片的边缘和缺陷位点的大量氧化物种,可用于对内晶的电化学分析物表现出电催化反应。我们报道的方法简单,可扩展性且具有成本效益,可用于制造GO-SPE,该方法表现出竞争激烈的LOD,并且在商业和药用应用中具有重大兴趣。