在今年早些时候的一项研究中,研究人员发现了可能治疗某些脑转移的药物。但是,要确定哪种患者最终可以从这种方法中受益,医生需要知道癌症是否已扩散到周围的组织中。手术是最常见的解决方案,但对于患者而言,这并不总是可以选择的,尤其是当他们的肿瘤难以获得或健康外科手术的风险过高时。
在这里,我们引入了一种改进的后处理方法T-MSD,旨在解决罕见事件对相关数据的影响,并增强估计扩散系数的统计可靠性。此方法包括两个部分:时间平均的MSD分析和Block JackKnife(BJ)重采样。使用深层势分子动力学(DPMD)模拟,我们证明了时间平均的MSD有效地减少了数据波动并实现了时间平移不变性,从而得出了扩散系数的更强大的估计值。据我们所知,尽管该方法已用于分析生物学和化学领域中的单个粒子跟踪[28,29],但它很少在固态离子学中应用。此外,BJ重采样通过明确考虑
标题:在1.5T MR-LINAC平台上对头颈癌的显而易见的扩散系数的回波平面成像的重新延伸系数的重现:使用QIBA计量学的技术验证作者:Brigid A. McDonald 1,Dina El-Habashy 1,Renjie He 1,Sammir 1,Sam Mir Bir 1,2 Mohamed 1, 3 , Sara Ahmed 1 , Yao Ding 4 , Jihong Wang 4 , Stephen Y. Lai 5 , Alex Dresner 6 , John Christodouleas 7 , Clifton D. Fuller 1 Affiliations: 1 The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, TX, USA 2 UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston,美国德克萨斯州3贝勒医学院,放射肿瘤学系,美国德克萨斯州休斯敦4 4美国德克萨斯州安德森大学癌症中心,放射物理系,美国德克萨斯州休斯顿,美国5号,美国德克萨斯州癌症中心,德克萨斯州癌症中心,德克萨斯州休斯敦,德克萨斯州休斯敦,美国德克萨斯州休斯敦,美国6美国菲利普斯医疗保健MR on Ceport,美国埃尔克斯郡,美国7月,美国埃尔克斯郡。目的:为了检测放射治疗期间的明显扩散系数(ADC)值的变化,用于生物图像引导的自适应放射治疗,必须表征ADC的变异性。我们评估了1.5T MR-LINAC上头颈癌中ADC值的可重复性。方法:39例头颈癌患者(36例原发性肿瘤,55个淋巴结)在1.5T MR-LINAC上在辐射疗法开始之前的两个时间点上以回声 - 平面成像扩散加权MRI成像。为每个病变测量平均值和中位ADC值和体积。绝对性和可重复性系数(RC)。线性回归分析和F检验,以确定病变体积或扫描之间的时间是否影响可重复性。Results: For primary tumors & lymph nodes: mean ADC, median ADC, and volume were 1.27 ± 0.33 mm 2 /s & 1.17 ± 0.34 mm 2 /s, 1.25 ± 0.35 & 1.16 ± 0.37 mm 2 /s, and 8.8 ± 12.3 cm 3 & 6.5 ± 7.2 cm 3 , respectively.对于肿瘤和节点,平均ADC的RC值为0.355 mm 2 /s&0.355 mm 2 /s,%RC值为29.1%和31.1%;中值ADC非常相似。可重现性与体积或扫描间隔没有显着相关,但是观察到较小体积的可重复性较差的趋势。结论:考虑到先前的报告,最佳%∆ ADC在头颈癌中的响应预测阈值约为15-30%,MR-LINAC上的这种序列具有可接受的可重复性来检测较大的ADC变化,但仍可能错过一些临床上显着的变化。
图1。(a)我们提出的拖拉术算法的概述:给定种子点或部分已知的流线,我们的方法提取了相应的局部和邻域DMRI信号,以形成输入数据序列(x 1,…,x t)。然后将此序列馈送到我们的网络中,以预测传播的方向。随后,流线根据给定的步长和传播方向生长。更新的流线(不完整)将是我们方法的新输入,
机器学习(ML)在统计缩减中起着越来越有价值的作用。能够利用培训数据中潜在的复杂的非线性关系,社区表现出ML学习缩小映射的巨大潜力。遵循完美预后(PP)方法,可以对ML模型进行历史重新分析数据的培训,以了解粗糙预测因子与更高分辨率之间的关系(即缩小)预测。一旦受过训练,这些模型就可以在一般循环模型(GCM)输出上进行评估,以产生区域缩小的结果。由于培训的计算成本相对较低和利用这些模型,它们可用于有效地降低气候模型的大集合,而不是区域与全球域。
摘要 - 基于卷积神经网络(CNN)的深度学习模型已用于对阿尔茨海默氏病进行分类或从T1加权大脑MRI扫描中推断痴呆症的严重程度。在这里,我们研究了添加扩散加权MRI(DMRI)作为这些模型的输入的值。在这一领域进行了许多研究,重点介绍了特定数据集,例如阿尔茨海默氏病神经影像学计划(ADNI),该计划评估了北美人(主要是欧洲血统)的人,因此我们研究了对ADNI培训的模型,该模型如何推广到来自印度(Nimhans Cohort)的新人口数据集。我们首先通过预测“大脑时代”来基准我们的模型 - 从其MRI扫描中预测一个人的年龄并继续进行广告分类的任务。我们还评估了在训练CNN模型之前使用3D CycleGAN方法来协调成像数据集的好处。我们的实验表明,在大多数情况下,在协调后的分类性能会提高,并且DMRI作为输入的性能更好。
摘要。外延石墨烯中的金属插入使近端诱导的超导性和修饰的量子传输特性的出现。然而,设备制造中的挑战阻碍了插入石墨烯的系统运输研究,包括加工引起的除法和标准光刻技术下的不稳定性。在这里,我们介绍了一种光刻控制的插入方法,该方法可实现可扩展的镀批镀金式准燃料及双层石墨烯(QFBLG)霍尔棒设备的可扩展制造。通过将光刻结构与随后通过专用插入通道进行插入,该方法可确保对金属掺入的精确控制,同时保持设备完整性。磁磁运输测量值揭示了临界温度𝑇𝑇≈3.5k的超导性,并且横向电阻的出现,包括对称和反对称场成分,这归因于对称内部野体组件,归因于非均匀的电流。这些结果建立了用于插入石墨烯设备的高级制造方法,从而提供了对范德华异质结构中约有2D超导性和新兴电子相的系统研究的访问。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2025年3月2日发布。 https://doi.org/10.1101/2025.02.27.640020 doi:Biorxiv Preprint
