Loading...
机构名称:
¥ 1.0

机器学习(ML)在统计缩减中起着越来越有价值的作用。能够利用培训数据中潜在的复杂的非线性关系,社区表现出ML学习缩小映射的巨大潜力。遵循完美预后(PP)方法,可以对ML模型进行历史重新分析数据的培训,以了解粗糙预测因子与更高分辨率之间的关系(即缩小)预测。一旦受过训练,这些模型就可以在一般循环模型(GCM)输出上进行评估,以产生区域缩小的结果。由于培训的计算成本相对较低和利用这些模型,它们可用于有效地降低气候模型的大集合,而不是区域与全球域。

将新型生成扩散模型应用于降水降压

将新型生成扩散模型应用于降水降压PDF文件第1页

相关文件推荐