摘要。扩散模型已成为生成建模的强大框架。该方法的核心是分数匹配:在不同尺度上,数据分布的嘈杂版本的对数密度的学习梯度。当使用经验数据而不是人口损失评估评分匹配中采用的损失函数时,最小化器对应于时间依赖的高斯混合物的得分。但是,使用此分析可牵引的最小化器会导致数据记忆:在无条件和条件设置中,生成模型都返回训练样本。本文包含对记忆潜在的动力学机制的分析。分析强调了避免重现分析可牵引的最小化器的正规化的必要性;而且,这样做的基础是对如何正规化的原则理解。数值实验研究了:(i)Tikhonov正则化的特性; (ii)旨在促进渐近一致性的正则化; (iii)通过训练神经网络的神经网络的参数不足或提早停止引起的正常化。这些实验是在记忆的背景下评估的,并突出了未来正规化发展的方向。
主要关键词