机器人可以探索和学习多少没有限制,但是所有这些知识都需要搜索和可行。在语言研究中,重新增强生成(RAG)已成为大规模非参数知识的工作室,但是现有技术并未直接转移到具有多模式的体现域,数据高度相关,感知需要抽象。为了应对这些挑战,我们引入了体现rag,该框架可以通过非参数存储器系统来增强体现代理的基础模型,该系统能够自主构建导航和语言生成的层次结构知识。体现的rag依处理各种环境和查询类型的各种空间和语义分辨率,无论是针对特定对象还是对氛围的整体描述。在其核心上,体现rag的记忆是作为语义森林结构的,以不同级别的细节存储语言描述。这个分层组织允许系统在不同的机器人平台上有效地生成上下文敏感的输出。我们证明,体现的抹布有效地将抹布桥接到机器人域,成功处理了19个环境中的200多个解释和导航查询,突显了其对常规非参数系统的预期用于实施剂。
主要关键词