摘要 对极重采样旨在生成共轭点位于同一行的归一化图像。这一特性使得归一化影像对于自动影像匹配、空中三角测量、DEM 和正射影像生成以及立体观看等许多应用都十分重要。传统上,归一化过程的输入媒体是帧相机捕获的数字影像。这些影像可以通过扫描模拟照片获得,也可以直接由数码相机捕获。与模拟相机相比,当前的数码帧相机提供的图像格式更小。在这方面,线阵扫描仪正在成为二维数码帧相机的可行替代品。然而,线阵扫描仪的成像几何比帧相机更复杂。一般而言,线阵扫描仪的成像几何会产生非直线的对极线。此外,根据忠实描述成像过程的严格模型对捕获的场景进行对极重采样需要了解内部和外部传感器特性以及物体空间的数字高程模型 (DEM)。最近,平行投影已成为一种替代模型,用于近似具有窄视场角的高空扫描仪的成像几何。与严格模型相比,平行投影模型不需要
摘要 机载激光扫描 (或激光雷达) 已成为获取数字地形模型数据的一种非常重要的技术。除此之外,该技术越来越多地用于获取点云,以对各种物体进行建模,例如建筑物、植被或电力线。作为一种主动技术,机载激光扫描即使在图像对比度较差的地形上也能提供高可靠性。该技术的精度通常规定为一到两分米的数量级。由于其主要用于数字地形建模,迄今为止对机载激光扫描精度潜力的检查主要集中在高度精度上。随着该技术用于一般重建任务和激光扫描仪系统分辨率的提高,激光扫描仪点云的平面精度成为一个重要问题。除了激光测距仪和偏转镜系统中的误差外,机载激光扫描仪的误差预算还受到用于传感器姿态 [位置和方向] 确定的 GPSI INS 系统的强烈影响。这些系统的误差通常会导致激光扫描仪数据条带变形,并且可能表现为激光扫描仪数据块中相邻条带重叠区域的差异。本文介绍了在 TIN 结构上实施的最小二乘匹配,作为确定激光扫描仪
附加信息可以降低对大量地面控制点( GCP )的要求摘要 机载三线扫描仪( TLS )成像系统已经为制作立体和多光谱概念提供了新的可能性,例如数字表面/地形模型、使用推扫式模式的制图和分类地图(Fritsch 和 Stallmann,2000 年)。另一方面,机载线性成像系统的发展取得了进展。TLS 系统的原型 STARIMAGER 是日本 STARLABO 公司和东京大学于 2000 年联合开发的,并在本文中介绍了全色、多光谱和高光谱图像。介绍了一种实验室方法和算法来评估用于制图和 GIS 应用的数据(Tempelmann 等人,2000 年)。数字摄影测量组件 (DPA) 于 1995 年由斯图加特大学摄影测量研究所完成并测试,以产生 1:25,000 的
FCC 声明:本设备已经过测试,符合 FCC 规则第 15 部分中 B 类数字设备的限制。这些限制旨在为住宅安装提供合理的保护,防止有害干扰。本设备会产生、使用并辐射射频能量,如果不按照说明手册进行安装和使用,可能会对无线电通信造成有害干扰。但是,无法保证在特定安装中不会发生干扰。如果本设备确实对无线电或电视接收造成有害干扰(可通过关闭和打开设备来确定),则鼓励用户尝试通过以下一种或多种措施来纠正干扰:
FCC 声明:本设备已经过测试,符合 FCC 规则第 15 部分中 B 类数字设备的限制。这些限制旨在为住宅安装提供合理的保护,防止有害干扰。本设备会产生、使用并辐射射频能量,如果不按照说明手册进行安装和使用,可能会对无线电通信造成有害干扰。但是,不能保证在特定安装中不会发生干扰。如果本设备确实对无线电或电视接收造成有害干扰(可通过关闭和打开设备来确定),建议用户尝试通过以下一种或多种措施来纠正干扰:
