密歇根州卫生与公众服务部计算机断层扫描 (CT) 扫描仪服务需求证明 (CON) 审查标准(根据 1978 年公共法案第 368 号法案第 22215 节(经修订)以及 1969 年公共法案第 306 号法案第 7 节和第 8 节(即密歇根州汇编法第 333.22215、24.207 和 24.208 节)授予 CON 委员会的权力。)第 1 节 适用性第 1 节 这些标准是批准启动、扩展、更换或获取 CT 服务以及根据法典第 222 部分提供服务的要求。根据法典第 222 部分,CT 是一项涵盖的临床服务。该部门应使用这些标准来应用《法典》第 22225(1) 节(即《密歇根州汇编法》第 333.22225(1) 节)和《法典》第 22225(2)(c) 节(即《密歇根州汇编法》第 333.22225(2)(c) 节)。第 2 节 定义 第 2 节 (1) 就这些标准而言: (a) “获得现有 CT 扫描仪服务”是指通过合同、所有权或其他类似安排获得现有固定或移动 CT 扫描仪服务或现有 CT 扫描仪的所有权或控制权。对于涉及移动 CT 扫描仪的拟议项目,这适用于中央服务协调员和/或主办机构。 (b) “可计费程序”是指作为单个单元计费并在密歇根州进行的 CT 程序。 (c) “身体扫描”包括所有脊柱 CT 扫描和颈部以下(包括颈部)解剖部位的任何 CT 扫描。 (d) “捆绑式全身扫描”是指作为一次 CT 程序收费的两次或多次全身扫描。 (e) “中央服务协调员”是指负责移动 CT 扫描仪操作的组织单位,并且是获准在密歇根州开展业务的法人实体。 (f) “需求证明委员会”或“委员会”是指根据《法典》第 22211 节(即《密歇根州汇编法》第 333.22211 节)设立的委员会。 (g) “法典”是指经修订的 1978 年《公共法案》第 368 号法案,即《密歇根州汇编法》第 333.1101 节及以下各节。 (h) “计算机断层扫描”或“CT”是指使用射线和计算机技术生成头部或身体的横截面图像。 (i) “CT-血管造影混合单元”是指由位于同一房间的 CT 和血管造影设备组成的集成系统,专为介入放射学或心脏手术而设计。CT 单元是一种引导机制,旨在作为手术的辅助手段。除非患者目前正在接受 CT-血管造影混合手术并且需要进行二次诊断研究,否则 CT 单元不得用于诊断研究。(j) “CT 当量”或“CTES”是指将每个类别的可计费程序数量乘以第 16 节中列出的相应转换系数后产生的单位数。 (k) “CT 扫描仪”是指能够对头部、其他身体部位或全身患者程序进行 CT 扫描的 X 射线 CT 扫描系统,包括仅用于 CT 程序的正电子发射断层扫描 (PET)/CT 扫描仪混合系统。该术语不包括使用内部管理的单光子伽马射线发射器的发射计算机断层扫描系统、正电子湮没 CT 系统、磁共振、超声计算机断层扫描系统、仅用于与 MRT 装置结合治疗计划目的的 CT 模拟器、非诊断性、术中引导断层扫描装置以及牙科 CT 扫描仪,这些扫描仪产生的峰值功率为 5 千瓦或更低(经制造商认证),专门设计用于生成 CT 图像,以方便持牌牙医在牙科执业期间进行牙科手术。 CT 扫描仪的任何其他用途(例如但不限于脊椎按摩治疗),产生的峰值功率为 5 千瓦或更低
摘要。通常,复杂航空航天部件的超声波检测采用喷射技术。然而,水耦合会带来压力变化、气泡、水垢、藻类和机械腐蚀等缺点。因此,最好采用非接触式技术,以避免这些缺点。空气耦合超声波技术可以通过特殊传感器结合特殊发射器和接收器技术来减少空气和固体之间的巨大声学失配。尽管进行了这些优化,但测试频率必须低于 1 MHz。已经发表的研究表明,低超声频率对于检查 CFRP 夹层部件(即使使用水耦合)是必要的。空气耦合超声波检测技术已经适用于测试 CFRP 蜂窝夹层结构。由于传感器在复杂部件的相对侧垂直对齐,因此需要十轴机器人扫描系统。本文介绍了欧洲直升机公司自 2011 年起在多瑙沃特运行的自动空气耦合机器人超声波成像系统的初步结果和细节。该项目是欧洲直升机公司德国分公司、Robo-Technology、EADS Innovation Works、Ing. Büro Dr. Hillger 和 Ostertag 之间的合作项目。
本研究于 2002 年和 2003 年进行,旨在评估先进测绘技术对联邦公路管理局联邦土地公路部门典型任务的适用性。地面激光扫描系统已被确定为一种可用于测绘任务的新兴技术。该研究包括在加利福尼亚州里弗赛德现有项目现场对激光扫描方法进行现场演示。陡峭的地形和茂密的灌木丛导致能见度受限,无法成功对许多目标位置进行地形测绘。地面激光扫描在那些能见度和访问不太复杂且可以利用点云数据提供的丰富细节和准确性的有限应用中具有优势。可能的示例应用可能是历史资源的记录或结构的详细测绘。机载光探测和测距 (LiDAR) 与地面激光扫描类似,但其向下看的视角和快速的线性覆盖更适用于路线测量。 LiDAR 任务可提供大量数据点,通过点云数据实现可视化和虚拟地形测绘。机载 LiDAR 还发现,在茂密的植被中,可见度有限,因此森林茂密的地区和浓密的灌木丛并不是最佳应用。还必须考虑
摘要:海岸线是重要的地理边界,监测海岸线变化在海岸综合管理中起着重要作用。随着遥感技术的发展,许多研究已经利用光学图像来测量和提取海岸线。然而,一些因素限制了光学成像在海岸线测绘中的应用。考虑到机载激光雷达数据可以提供更精确的地形信息,已经有一些研究使用机载激光雷达来绘制海岸线。然而,尚未进行将机载激光雷达与海岸线测量和提取方法相结合的文献综述。本文的目的是对使用机载激光雷达进行海岸线测绘进行叙述性回顾,包括激光扫描系统、数据可用性以及过去二十年来当前的提取技术。因此,我们进行了广泛的搜索,最终总结了 130 多篇关于机载激光雷达技术用于海岸线测量和海岸线提取的文章。我们发现利用机载 LiDAR 进行海岸线测绘仍面临诸多挑战,例如客观条件限制、数据可用性限制和自身特性限制。目前的海岸线提取方法有很大的改进潜力;特别是当与新兴的当前最先进的 LiDAR 点云处理技术(例如深度学习算法)相结合时,它们将具有巨大的潜力
威斯康星州发现研究所分析了不同的犯罪现场和交通事故文档方法,包括传统素描/摄影,静态3D扫描和移动3D扫描。这项研究强调了3D扫描与传统方法的三个主要好处;避免了时间成本,减少流量延迟并访问其他信息。该研究还证明了静态和移动扫描方法之间的差异。在车祸场景中,传统方法花费了159分钟的记录,静态3D扫描需要70分钟,而移动扫描仪仅需43分钟即可挖掘现场。〜分钟可以增加数小时,为调查部门以及Pub-Lec占用了宝贵的时间。通过使用移动3D扫描仪,由于致命交通事故而导致的道路封闭。官员可以轻松安全地在现场捕获高质量的证据和措施,而无需任何三脚架设置和重新定位。这种能力通过限制他们接触交通的时间,并为公众开放的道路开放,从而提高了官员的安全。减少时间的同时增加了准确的证据,对于任何机构来说都是双赢的。另外,一些用户正在利用移动扫描系统来补充静态扫描仪,以对周围环境进行更完整的图片,以在事件前围绕导线提供更多相关的叙述。
神经疾病经常被诊断出世界各地。大约有6人患有神经系统疾病或疾病。这些疾病不容易诊断。常见的诊断方法之一是成像系统。通过图像诊断在寻找肿瘤点,生物标志物,预后和个性化治疗方面缺乏准确性。通过机器学习和深度学习的人工智能有助于帮助医生进行诊断和治疗。神经肿瘤学,帕金森氏病和自闭症谱系障碍是人类中发现的常见疾病。随机森林,支撑车机,卷积神经网络,人工神经网络是用于检测神经疾病的一些常见算法。机器学习和深度学习算法有助于预测健康患者即将到来的症状。这些算法主要与扫描系统结合,通过图像分析,它们可以检测到治疗,识别特定的生物标志物并增加患者的愈合。来自深度学习的机器学习和神经网络的数据在医疗保健中起关键作用。iPhone,Apple手表和其他可穿戴设备包含人工智能,可以在事故发生前检测癫痫,心脏骤停和中风。其中一些设备还可以帮助医生和医生了解患者的病史。人工智能确实是可以改善药用领域的未来。关键字:支持车辆机器,帕金森氏病,脑肿瘤,深度学习,机器学习。
在193 nm处的光刻是在光刻中从436到365到248 nm的自然延续,这取决于不断较高的分辨率的要求。预计193 nm的光刻将在使用常规面具和O.带有相位转移掩码的18-JLM分辨率。正在解决此新波长时与光刻相关的主要问题。已显示出高度透明的光学材料在193 nm处可用。此外,激光辐射以足够缓慢的速度损坏它们,预计高质量投影光学元件将在10年的全日制运行中执行。因此,正在构建193 nm的踏扫描系统,其设计为在22 x 35 mm的场上达到0.25-L-LM分辨率。已经证明了193 nm光孔师方案的范围。它们包括半透明的单层固定,正色调表面成像(sily!ation)以及使用基于Ultrathin硅聚合物的负色调双层。在大多数情况下,我们已经证明了Sub-O.25-TTM分辨率,高光敏性,良好的暴露量化纬度和非常低的蚀刻残基。总的来说,已经采取了全面设计的193 nm光刻的成功步骤,并且没有预期的主要障碍。
压力服(EVA 和 LES)设计。与阿波罗计划中使用的测角仪和 2D 静态摄影方法相比,过去二十年,随着 3D 运动捕捉的使用,评估宇航服 ROM 的方法有了显著的进步。这些方法更准确地模拟了宇航服(例如)对标称人体 ROM 和伸展范围的限制。目前评估宇航服 ROM 的研究方法利用 Vicon 相机系统跟踪放置在执行运动序列的受试者身上的反射标记,然后将其识别为 3D 空间中的坐标点。德克萨斯 A&M 大学的航空航天人体系统实验室 (AHSL) 开发了一种利用 3D 摄影测量扫描仪可视化和分析 ROM 和伸展体积包络的新方法。具体而言,使用 10 相机扫描系统以每秒 10 张图像的速度捕捉人体受试者的 20 秒运动序列,从而产生 200 张 3D 图像。结合支持计算机程序,任何人体测量兴趣点都可以在人体或防护服扫描图上标注出来,进行协调,自动跟踪整个运动序列,然后绘制成图表,以分析受试者在未穿防护服、未穿防护服加压和穿防护服加压配置下的伸展和 ROM。理论上,这种方法可以模拟任何尺寸的受试者在任何防护服尺寸下的表现下降。将这种策略应用于未穿防护服的扫描人体
为了满足未来对月球永久阴影区域的科学探索的发电需求,我们展示了一种新颖的激光功率传输方法。一支本科多学科学生团队汇集了电气工程、机械工程、计算机科学和光学方面的专业知识,以应对 NASA 的功率传输挑战。可以使用高效、高功率的激光器将功率从持续被阳光照射的陨石坑边缘传输到永久阴影陨石坑内部的远距离资产,那里预计有大量的水冰。扩展和准直光学器件用于减少十公里长距离的激光束发散。光束扫描系统以及资产上的回射器用于定位和跟踪具有象限光电探测器排列的移动资产。万向架式光伏接收器通过照明源进行跟踪,并将光能转换为电能,供资产的电池系统和其他科学仪器使用。定制印刷电路板跟踪光伏阵列的最大功率点,并为资产的电池充电提供电力。通过为移动探测车供电,展示了所有组件的全面集成。该项目研究了设计考虑因素、组件级性能测量、集成系统性能评估以及进一步改进系统的未来机会。此外,我们正在为同行评审的光学期刊准备一份出版物,详细介绍我们的系统和研究结果。
我们提出了一种基于热荧光的低频场测量和成像新方法。在介绍了该技术的原理和实验装置之后,我们展示了通过记录发光磁性薄膜的荧光信号,可以在相对较大的表面上几乎瞬间获得磁场制图。各种来源发射的电磁场的表征是一个重要问题,无论是民用还是国防应用(磁线圈、天线、电信、雷达、民用和军用航空、医学等)。可以通过单个探针执行电磁场测量以获得空间局部结果。对于可视化磁场的空间分布(历史上从沉积在一张纸上的铁屑中获得),有几种已知技术可用 [1 - 3]。使用移动探针的扫描系统是一种常见的商业解决方案 [4]。随着法拉第磁光成像 [5] 的发展,以及电子显微镜中洛伦兹或全息技术 [6] 的小规模发展,静态磁场的直接成像已经发展起来。集成电路和超大规模集成 (VSLI) 设备的近场测量可以通过使用空间分辨率为几百微米或更低的小探针扫描来解决 [6,7]。这种分辨率确实非常适合 EMC 和 EMI 测量,因此受到国际标准 (IEC61967 和 IEC62132) 的推荐 [8]。对于动态场观测,适当的方法是基于频闪成像,通过铁磁传感器的磁化变化实时演变磁场,直至亚纳秒级(例如,参见 M.R. 的评论。Freeman 等人。[10]。然而,这些技术对于常规表征来说相当复杂且耗时。在相对较短的时间内获得磁场映射更加困难。具有竞争力的