本文基于 2023 年 1 月在新奥尔良发表的美国经济协会杰出讲座。我感谢 Ufuk Akcigit、David Autor、Rena Conti、Joe Doyle、Michael Greenstone、Simon Johnson、Chad Jones、Amy Finkelstein、Will Rafey、Dani Rodrik 和 John Van Reenan 提供的非常有用的评论、讨论和参考。我感谢 Juanita Jaramillo、Shinnosuke Kikuchi、Fredric Kong 和 Todd Lensman 提供的出色研究协助。特别感谢 David Hemous、Ralf Martin、Jacob Moscona 和 John Van Reenen 分享数据并为本文报告的实证工作提供帮助。最后但并非最不重要的是,这项工作大量借鉴了与几位合著者的合作。我特别感谢 Ufuk Akcigit、David Autor、Simon Johnson、Pascual Restrepo 和 Fabrizio Zilibotti 对我在这些主题上的知识和理解的持久贡献。所有剩余的错误当然都是我自己的。我非常感谢休利特基金会的慷慨资助。本文表达的观点均为作者本人观点,并不一定反映美国国家经济研究局的观点。
在存在标价差异、外部性和其他社会因素的情况下,创新的均衡方向可能会被系统性地扭曲。本文建立了一个简单的内生技术模型,该模型概括了现有的比较静态结果并描述了创新方向上的潜在扭曲。我表明,许多不同领域的实证结果与该框架的预测一致,并使用来自多项研究的数据来估计其关键参数。结合这些数字和差异外部性和标价的粗略估计,我提供了有启发性的证据,表明在工业自动化、医疗保健和能源领域,技术方向上的均衡扭曲可能很大,纠正这些扭曲可能会带来可观的福利效益。关键词:定向技术变革、经济增长、能源、医疗保健、创新、技术。JEL 分类:O33、O14、O31、J23、J24、C65、L65。
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
我们估计了在 Q 2 ¼ − q 2 1 较大和 s ¼ ð q 1 þ q 2 Þ 2 较小时对 γ ð q 1 Þ γ ð q 2 Þ → M ð p 1 Þ ¯ M ð p 2 Þ 振幅的运动学高扭曲(高达扭曲 4)修正,其中 M 是标量或伪标量介子。众所周知,该过程在领先扭曲处分解为可扰动计算的系数函数和广义分布振幅(GDA)。考虑到 Belle 和 Belle II 可获得的运动学,s=Q 2 和 m 2 =Q 2 阶的运动学高扭曲贡献在截面中非常重要。我们利用从 Belle 测量中提取的 ππ GDA 和渐近 ππ GDA 作为输入,对 γ γ → π 0 π 0 的截面进行了数值估计,以研究运动学修正的幅度。为了了解 m 2 =Q 2 量级的目标质量修正如何影响截面,我们还使用模型 ηη GDA 对 γ γ → ηη 进行了计算。在 s > 1 GeV 2 的范围内,运动学高扭曲修正占总截面的 ∼ 15%,这个影响是不可忽略的。由于 ππ GDA 是获取介子能量动量张量 (EMT) 的最佳方式,我们的研究表明,准确评估 EMT 形状因子需要考虑运动学高扭曲贡献。
金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,
一种制备具有手性形态的稳定无机纳米粒子的稳健且可重复的方法可能是这些材料实际应用的关键。本文介绍了一种制备四重扭曲金纳米棒的优化手性生长方法,其中使用氨基酸半胱氨酸作为不对称诱导剂。在半胱氨酸作为手性诱导剂、抗坏血酸作为还原剂的情况下,反复还原 HAuCl 4 后发现在单晶纳米棒表面形成了四个倾斜的脊。通过对晶体结构进行详细的电子显微镜分析,提出不对称性是由于初始纳米棒上形成了突起(倾斜脊)形式的手性面,最终导致扭曲的形状。半胱氨酸的作用是协助对映选择性面演化,密度泛函理论模拟的表面能支持了这一观点,表面能随着手性分子的吸附而改变。因此,R 型和 S 型手性结构(小面、梯田或扭结)的发展将不相等,从而消除了 Au NR 的镜像对称性,进而导致具有高等离子体光学活性的明显手性形态。
情节扭曲:当RNA证据挑战我们对DNA结果的期望时,Alexandra Richardson,MS; Terra Brannan,博士; Colin Young博士; Marcy Richardson博士; Carrie Horton,MS-CGC; Heather Zimmermann,博士背景:配对的DNA和RNA测试(DGT-RGT)通过检测位于标准的下一代序列(NGS)捕获以外的剪接变体和提供变体分类中的证据范围来提高DNA结果的准确性。DGT-RGT的另一个好处是识别导致意外或非常规剪接事件的变体。在这里,我们提出了一个变异级别的病例系列,该病例序列突出了通过DGT-RGT在一个临床诊断实验室中鉴定出的意外RNA发现。变体呈现:变体1-NF1 C.888+2T> C会影响剪接供体部位内的规范位置,从而根据当前ACMG指南将其分类为病原(LP)。最近的研究表明,+2位置的T> c取代能够在某些基因组环境中产生野生型转录本。DGT-RGT并未确定与该变体相关的明显异常剪接,这与载体中缺乏神经纤维瘤病一致。变体2- BRIP1 c.727a> g(p.i243v)是中期错义变化,在硅剪接站点中,该算法预测了创建强大的de从头供体站点。RNA研究证实了这种新型供体部位的使用,但出乎意料地表明,外显子内的现有隐性受体位点同时被激活,从而有效地在外显子内产生了伪内龙。在计算机剪接算法中预测了新型U2受体位点的创建。变体3&4 NF1 C.5750-184_5750-178 duptttcttc和atm c.3480g> t(p.v1160v)分别是内含子和同义中的中性和同义性中性变化。RNA测试确定了使用远处的隐性受体部位引起的异常转录本。这两个变体都会增加神秘受体上游隐秘的多吡啶氨酸段中的嘧啶含量。多嘧啶界是受体剪接位点识别中的重要组成部分,但据我们所知,尚未据报道隐性多吡啶氨酸裂纹激活作为异常剪接的机制。变体5&6 -BRCA2 [C.6816_6841+1534DEL1560; c.6762delt]和APC c.1042c> t(p.R3248*)预计由于过早终止密码子(PTC)而导致无义介导的衰减(NMD),因此根据ACMG指南将其归类为致病性。然而,RNA测试表明,这些变体引起了框架内的剪接事件,从而去除了PTC,这一发现与载体中相关的基因 - 疾病表型不存在一致。变体7- lztr1 c.2232g> a(p.a744a)是一种高频同义词,位于内含子的下游,它通过毫无常见的U12剪接体剪接。RNA测试表明,新型U2受体位点经常与现有的上游,隐秘的U2供体站点一起使用,但仅在某些个体中。其他具有低级异常剪接的概率对于弱化隐秘的U2供体部位的常见多态性是纯合的。结论:据我们所知,这是影响内含子的U2/U12-身份的单个核苷酸变化的第一个例子,它也例证了转录组中的个体变异性。
降低能源强度是实现“双碳”目标、建设美丽新疆的重要举措。本文选取2010—2020年新疆14个地区的面板数据,运用动态面板数据模型、空间杜宾模型、中介效应模型和面板平滑过渡模型,实证检验数字经济和产业结构扭曲对新疆能源强度的影响。研究结果表明:数字经济可以降低能源强度,但存在区域异质性;产业结构扭曲显著增加了新疆能源强度;数字经济有效缓解了产业结构扭曲,从而抑制了能源强度;数字经济对新疆能源强度的影响具有中介效应和调节效应,且随着产业结构扭曲的改善,数字经济对新疆能源强度的抑制作用呈下降趋势。因此,需要加快发展数字经济,减少产业结构扭曲,加强环境规制,促进技术创新,合理调整能源价格,提高外商直接投资准入门槛,扩大对外开放,推动“四化”同步科学发展,消除产业结构扭曲的根源,从而降低能源强度。